Choosing the Right NPK Fertilizer: Enhancing Crop Yield and Quality

 In global agricultural production, selecting the right NPK fertilizer is a key factor influencing crop yield and quality. This article will delve into the characteristics and applicable scenarios of different NPK fertilizers to help growers make informed choices and achieve efficient and sustainable agricultural production.

Understanding Crop Needs: The Foundation for Selecting the Right Formula

The first step in selecting NPK fertilizer is understanding the nutrient requirements of the target crop. Different crops, and even the same crop at different growth stages, have varying requirements for the proportions of nitrogen, phosphorus, and potassium. For example, leafy vegetables require more nitrogen to promote leaf growth, while fruit trees need more potassium during the fruiting period to promote fruit enlargement and sugar accumulation.

For field crops, balanced fertilizers (such as 15-15-15) are generally a good choice because they comprehensively provide the basic nutrients needed by the crop. For higher-value fruit and vegetable crops, specialized formula fertilizers often bring better results and returns. Modern precision agriculture technologies, such as soil testing and leaf analysis, can help growers more accurately understand crop needs and thus select the most suitable fertilizer formula.

Considering Soil Conditions: Suitability is Crucial

Soil characteristics are a critical factor to consider when selecting fertilizers. The pH, texture, and nutrient status of different soils directly affect fertilizer effectiveness and crop response.

In acidic soils, sulfur-based fertilizers are generally more suitable than chloride-based fertilizers because they do not exacerbate soil acidification and can replenish sulfur. For alkaline soils, chloride-based fertilizers may be a more economical choice. Soil texture also influences fertilizer selection: sandy soils have poor nutrient retention capacity and are suitable for slow-release fertilizers to reduce nutrient loss; clay soils can use conventional fertilizers.

Furthermore, the existing nutrient levels in the soil must be considered. Understanding the nitrogen, phosphorus, and potassium content of the soil through soil testing can avoid unnecessary nutrient application, saving costs and reducing environmental burden. In soils lacking micronutrients, choosing compound fertilizers fortified with these elements may be more advantageous.

Assessing the Production System: Matching Application Methods

The scale of planting and the level of mechanization of the production system directly affect the choice of fertilizer form. Large-scale farming typically requires granular fertilizers suitable for mechanized application, while small-scale or facility-based farming may prefer powdered or liquid fertilizers.

For modern farms using drip or sprinkler irrigation systems, highly water-soluble fertilizers are essential. Liquid fertilizers or fully water-soluble powdered fertilizers can mix evenly with water, ensuring proper operation of the irrigation system and uniform nutrient distribution. Traditional field crops can use conventional granular fertilizers, applied by broadcasting or strip application.

Labor costs are also a factor to consider. In areas with labor shortages or high costs, choosing slow-release or controlled-release fertilizers can reduce the number of fertilizations, thereby lowering labor costs. Although the initial investment in these fertilizers is higher, they may be more economical over the entire growing season.

Environmental Considerations: Choices for Sustainable Agriculture

With increasing global emphasis on environmental protection, choosing environmentally friendly fertilizers is becoming increasingly important. While controlled-release and slow-release fertilizers are more expensive, they significantly reduce nutrient loss and the risk of water pollution, aligning with the development direction of sustainable agriculture.

Organic-inorganic compound fertilizers combine the rapid effects of chemical fertilizers with the soil-improving properties of organic fertilizers, helping to increase soil organic matter content and improve soil structure. These fertilizers are particularly suitable for soils used in long-term, continuous cropping, and can alleviate soil degradation problems.

When choosing fertilizers, local climate conditions should also be considered. In rainy areas, choosing fertilizer forms that are less prone to leaching is especially important; while in arid areas, the water solubility of the fertilizer needs to be considered to ensure that crops can absorb nutrients under limited water conditions.

Economic Benefit Analysis: Balancing Costs and Benefits

Finally, a balance needs to be found between costs and expected benefits when choosing fertilizers. Although high-end fertilizers (such as controlled-release fertilizers and specialized formula fertilizers) are more expensive, they may provide higher returns by increasing yields, improving quality, or reducing other inputs (such as labor and irrigation).

For bulk crops, such as grains, cost-effectiveness may be the primary consideration, so economical general-purpose fertilizers may be more suitable. For high-value crops, such as fruits, vegetables, or specialty crops, investing in more precise, specialized fertilizers often yields better economic benefits.

It’s important to note that fertilizer costs include not only the purchase price but also transportation, storage, and application costs. Granular fertilizers are generally easier to store and transport than powdered fertilizers, while liquid fertilizers require specialized storage and application equipment. These factors should all be considered comprehensively when making a decision.

Future Trends and Innovations

The NPK fertilizer industry is constantly innovating, with new fertilizer products emerging continuously. Improvements in coating technology make controlled-release fertilizers more precise and economical; fertilizers with added biostimulants or beneficial microorganisms are gaining attention; and fully water-soluble crystalline fertilizers offer more options for greenhouse agriculture.

Digital technology is also changing how fertilizers are selected and applied. Through sensors, drones, and intelligent algorithms, growers can more accurately monitor crop nutrient status and achieve on-demand fertilization. These technological developments will make fertilizer selection more scientific and fertilization more precise, ultimately achieving efficient resource utilization and sustainable agricultural development.

By comprehensively considering crop needs, soil conditions, production systems, environmental factors, and economic benefits, growers can choose the NPK fertilizer best suited to their specific circumstances, achieving high-yield, high-quality, and efficient agricultural production.

Conclusion: Bridging Smart Selection with Advanced Manufacturing

In summary, selecting the optimal NPK fertilizer requires a nuanced analysis of crop needs, soil conditions, and farm economics. This thoughtful selection process ensures efficient nutrient use, supports crop health, and promotes environmental stewardship, ultimately maximizing both yield and sustainability.

The diverse fertilizer options available to farmers are made possible by sophisticated npk fertilizer production technology. A complete npk fertilizer production line utilizes advanced fertilizer granulation methods to create these products. The process typically involves precise blending of raw materials using an npk blending machine or npk bulk blending machine and a fertilizer mixer machine. The mixture is then formed into granules using key equipment such as an npk fertilizer granulator machine (employing npk granulation machine technology), a disc granulator machine, or a fertilizer roller press machine. Each piece of npk fertilizer machine within this npk fertilizer manufacturing process is designed to produce the specific formulations—from general blends to specialized controlled-release products—that meet the precise needs identified through smart agronomic selection.

Ultimately, the synergy between informed on-farm decision-making and precision manufacturing ensures a reliable supply of tailored nutrients, driving the future of productive and responsible agriculture.

Horizontal Agitation Granulation: An Innovative Solution for Organic Fertilizer Production

Overview Horizontal agitation and extrusion granulation technology is one of the core processes in the production of organic and bio-fertilizers. Through unique mechanical action, it directly transforms high-moisture, high-viscosity organic raw materials into uniform granules without external heating or the addition of binders. This low-temperature, low-energy granulation method is particularly suitable for processing organic waste such as livestock and poultry manure, straw, and mushroom residue, making it the preferred technology for modern organic fertilizer production.

Technical Principles and Process Characteristics

The core of this technology lies in the double-helix agitator shaft design within the horizontal main unit. When the motor drives the agitator shaft to rotate, the material undergoes three key processes within the cylinder: powerful agitation and mixing, axial propulsion and conveying, and radial extrusion molding. The raw material is first thoroughly kneaded and mixed by the propeller blades to form a uniform material agglomerate; then, under axial thrust, it moves towards the discharge end; finally, it is extruded into cylindrical granules through the discharge screen.

The greatest advantage of this process is that it operates at low temperatures throughout. Unlike traditional granulation processes that require high-temperature drying, horizontal mixing granulation maintains a relatively constant material temperature, ensuring a survival rate of over 95% for active microorganisms in the bio-fertilizer. Simultaneously, this technology can directly process raw materials with a moisture content of 25%-45%, eliminating the energy-intensive drying process and significantly reducing production costs.

Capacity and Configuration: Horizontal mixing granulation production lines offer a wide range of capacity to meet the needs of different production scales. Small production lines can process 1-3 tons of material per hour, suitable for family farms or small organic fertilizer workshops; medium-sized production lines have a capacity of 3-8 tons/hour, meeting the needs of county-level fertilizer plants; large production lines can reach 8-15 tons/hour, suitable for large-scale production enterprises; customized high-capacity lines can even reach a capacity of 15-25 tons/hour.

Key factors affecting capacity include raw material characteristics, moisture content, and equipment parameters. Organic fertilizer compost typically has a lower capacity, while the capacity of compound fertilizer raw materials can be increased by 20%-30%. The optimal moisture content range is 30%-35%. Too high a moisture content will cause material adhesion, while too low a moisture content will affect the molding effect. Regarding equipment, proper adjustment of the stirring shaft speed and extrusion gap is crucial for optimizing production capacity.

Application Areas and Product Compatibility

This technology is mainly applicable to two categories of fertilizer production:

The primary categories include pure organic fertilizer, bio-organic fertilizer, and refined organic fertilizer. These products are based on organic materials such as livestock and poultry manure and agricultural waste, and can be directly produced into commercial organic fertilizer that meets national standards using this technology.

Compatible categories include organic-inorganic compound fertilizers, micronutrient fertilizers, and low-concentration compound fertilizers. These products require the addition of inorganic nutrients to the organic fertilizer base; efficient production can be achieved through minor process adjustments.

It should be noted that this technology is not suitable for high-concentration compound fertilizers, pure inorganic fertilizers, or other fertilizer types that require high-temperature drying or special coating treatment.

Production Line Composition and Process

A complete horizontal mixing granulation production line typically includes three main sections: pretreatment, granulation, and post-treatment.

Pretreatment equipment includes crushers and mixers to ensure the raw materials achieve suitable particle size and uniformity.

The granulation machine is the core equipment, completing the material forming process.

Post-treatment equipment includes screening machines, polishing machines, and cooling devices to improve the quality of the final product.

The production line can be flexibly configured according to investment budget and production needs. Basic configurations meet basic production requirements, while high-end configurations can further improve the product’s appearance quality and storage stability.

Technological Advantages and Industry Comparison

Compared to traditional granulation technologies, horizontal mixing extrusion granulation has multiple advantages:

In terms of energy consumption, the energy consumption per ton of fertilizer is only 20-30 kWh, one-fifth of that of rotary drum granulation.

In terms of raw material adaptability, it can directly process organic materials with high moisture content without pre-drying.

In trms of bioactivity protection, the low-temperature process ensures a high survival rate of effective bacteria in the microbial fertilizer.

In terms of operating costs, the equipment has a simple structure, is easy to maintain, and has a long service life. Compared to flat die granulation, this technology has less stringent requirements on raw material moisture content; compared to rotary drum granulation, it has lower investment and operating costs. These advantages give it a significant competitive edge in the organic fertilizer production sector.

Selection and Operation Recommendations

Choosing a suitable production line requires consideration of capacity requirements, product positioning, and raw material characteristics. For production enterprises primarily producing bio-organic fertilizers, horizontal mixing granulation is an ideal choice. Equipment configuration should prioritize the performance of core equipment, followed by the addition of  auxiliary equipment based on actual needs.

In production and operation, raw material quality control is crucial. Maturity, moisture content, and particle size distribution directly affect production efficiency and product quality. Regarding equipment operation, the mixing speed needs to be adjusted according to the type of raw material, and the condition of vulnerable parts should be checked regularly.

Finished product quality control should focus on key indicators such as particle strength, moisture content, and granulation rate to ensure that the product meets national standards. Simultaneously, environmental requirements cannot be ignored, necessitating the installation of appropriate dust removal and deodorization equipment.

Development Trends

In the future, horizontal mixing granulation technology will develop towards intelligence, integration, and multi-functionality. By adding an automated control system, production parameters can be precisely adjusted; by integrating and optimizing equipment, overall production efficiency can be improved; and by innovating processes, the technology can be expanded to the resource utilization of more organic solid wastes such as kitchen waste and municipal sludge. These developments will further enhance the technology’s market competitiveness and environmental benefits, contributing to global sustainable agriculture.

Conclusion: An Integrated System for Sustainable Fertilizer Production

In conclusion, horizontal agitation and extrusion granulation stands as a cornerstone technology for efficient, low-energy organic fertilizer manufacturing. Its ability to process high-moisture organic waste into quality granules without damaging microbial life makes it indispensable for modern organic fertilizer production line operations focused on bio organic fertilizer production line outputs.

This granulation method is a key component within the broader ecosystem of organic fertilizer granulation technology. A complete system begins with high-quality raw material produced through controlled organic fertilizer fermentation, optimized by fermentation composting turning technology. The resulting mature compost is then shaped using the horizontal extrusion granulator, which can be complemented by other granulation technologies like a flat die pelleting machine or innovative designs such as the new type organic fertilizer granulator and new type two in one organic fertilizer granulator for specific product requirements. Together, these technologies form a versatile and efficient production chain.

Ultimately, by offering a perfect balance of energy efficiency, product quality, and raw material adaptability, this technology is a powerful driver for the sustainable conversion of organic waste into valuable soil resources, supporting the growth of circular and regenerative agriculture worldwide.

Requirements for raw materials in double roller press granulator: How to choose suitable materials?

Double roller press granulators are efficient and energy-saving equipment widely used in producing granular fertilizers like organic fertilizer, compound fertilizer, and bio-fertilizer. However, not all raw materials are directly suitable for extrusion granulation. The physical and chemical properties of the material directly affect the granulation results.
Physical Property Requirements
1.Appropriate Particle Size
Raw materials must be crushed, generally to 80-200 mesh (0.074-0.2mm). Particles that are too coarse make forming difficult, while particles too fine can affect flowability and cause the material to stick to the rollers.
2.Moderate Moisture Content
Excessive moisture (>15%) causes material to stick to the rollers and affects demolding. Insufficient moisture (<8%) makes forming difficult, and the granules become brittle. The optimal moisture range is usually 8%-12%, though this may vary based on material characteristics.
3.Good Plasticity
Materials need some stickiness and plasticity (like humic acid, composted manure, bentonite) to help improve granule formation rate and hardness.

Chemical Property Requirements
1.Moderate Organic Matter Content
For organic fertilizer materials (like compost, humic acid), an organic matter content of 30%-70% is recommended. Too high can lead to loose granules; too low affects fertilizer efficiency.
2.No Corrosive Components
Strong acids, strong alkalis, or high-salt substances should be avoided in the raw materials to prevent equipment corrosion or harm to crops.
3.No Hard Impurities
Hard objects like stones or metal fragments can damage the double roller press granulator die. Screening or magnetic separation is needed before granulation.
Double roller press granulators have strict requirements for raw material particle size, moisture, and binding properties. Selecting suitable materials and optimizing process parameters are essential for producing high-strength, qualified granular fertilizer.

The art of resource reshaping with organic fertilizer granulators

In today’s era where the circular economy is widely recognized, various granulation equipment is redefining the value of “waste” in its own way.

Stepping into a modern processing workshop, you’ll see different technological approaches: rotary drum granulators use the rotation of rollers to agglomerate materials into granules; while ring die pelleting machines, with their ring die structure, demonstrate high-efficiency production capacity in the feed and fuel sectors. Meanwhile, fertilizer compaction machines are focusing on transforming organic waste into valuable fertilizer products.

Within this diverse technological landscape, flat die pelleting machines maintain a unique balance. They don’t pursue exaggerated output, but rather achieve a perfect balance between pressure and efficiency within a compact space. This design gives them a unique advantage in small- to medium-scale production, especially with the emergence of new type two in one organic fertilizer granulators that combine mixing and granulation in a single unit, further simplifying the production process.

Even more commendable is the inclusivity of this technological family. From the reuse of agricultural and forestry waste to the molding of chemical raw materials, from traditional feed production to the emerging biomass energy sector, different granulation equipment showcases its strengths. Together, they form a bridge connecting different industries, allowing resources to continuously increase in value through cross-sectoral circulation.

With sustainable development becoming a global issue, the value of granulation technology has transcended that of a mere processing tool. Whether it’s a basic fertilizer compaction machine or an integrated, innovative model, they all embody the modern meaning of “turning waste into treasure” in the most practical way.

Key aspects of synergistic operation of core equipment in bio-organic fertilizer production

The production of high-quality bio-organic fertilizer relies on the efficient synergy of a complete set of bio-organic fertilizer equipment. From raw material composting to finished product molding, each stage is supported by dedicated core equipment.

In the raw material fermentation stage, the large wheel compost turning machine plays a crucial role. Through the rotation and turning of the large wheel, it effectively breaks up the raw material piles, allowing the material to fully contact the air. This not only rapidly increases the fermentation temperature and inhibits the growth of harmful bacteria, but also ensures uniform composting of the raw materials, laying a high-quality foundation for subsequent production. Insufficient turning can easily lead to insufficient composting of raw materials, directly affecting the subsequent mixing and granulation effects.

The composted raw materials need to be precisely mixed by a fertilizer mixer machine. At this stage, the composted raw materials, beneficial microbial agents, and auxiliary materials are added to the equipment in proportion. Mixing ensures the even distribution of each component, preventing localized nutrient enrichment or deficiency. Uniform material mixing is an important prerequisite for ensuring the quality of subsequent granulation and a key step in improving the effectiveness of bio-organic fertilizer.

In the granulation stage, the fertilizer granulator is the core equipment, and the flat die pelleting machine, due to its strong adaptability, is a commonly used type in bio-organic fertilizer production. The flat die pelleting machine produces high-strength, uniformly sized granular products through mold extrusion. During operation, the pressure and speed of the flat die pelleting machine need to be precisely adjusted according to the moisture content and particle size of the mixed materials to ensure stable granule formation and reduce material waste.

Precise matching, no waste! Configuring fertilizer production lines based on raw materials

The core of fertilizer production line configuration is “raw material adaptation.” Different raw materials (moisture content, particle size, and composition) require significantly different choices of pre-treatment, fermentation, and granulation equipment. Blindly copying generic solutions easily leads to low capacity, poor product quality, and high energy consumption.

If the raw material is high-moisture livestock and poultry manure (such as chicken manure, pig manure, with a moisture content of 60%-80%): the pre-treatment stage requires a solid-liquid separator and crushing and screening equipment to reduce moisture to 55%-60%, remove impurities, and finely process the material; the fermentation stage uses a trough-type or crawler-type compost turning machine to ensure ventilation and oxygen supply, accelerating decomposition; the granulation stage prioritizes an organic fertilizer disc granulator (wet granulation), paired with a dryer and cooler, to adapt to the molding needs of high-moisture raw materials, followed by a screening machine and packaging machine to complete the entire process.

If the raw material is dry, loose organic material (such as straw, sawdust, with a moisture content of 10%-20%): the core of pre-treatment is crushing and mixing, using a high-speed crusher to refine the raw material to 2-5 centimeters, and then mixing it with livestock and poultry manure and fermentation agents to adjust moisture and carbon-nitrogen ratio; the fermentation stage can use a windrow compost turning machine, adapting to the turning needs of loose materials; the granulation stage is suitable for a double roller press granulator (dry granulation), requiring no additional water, directly extruding and forming the material.

If the raw material is industrial organic waste residue (such as mushroom residue, pharmaceutical residue, with complex composition): a pre-treatment screening stage needs to be added to remove heavy metals and other harmful impurities, and then a special mixer is used to precisely adjust nutrients; the fermentation stage uses a closed trough-type compost turning machine to control odor diffusion; the granulation stage selects a flat die or ring die pelleting machine based on the viscosity of the waste residue.

Core adaptation principle: First, clarify the three key indicators of raw material moisture content, particle size, and composition, and then sequentially match the core equipment for pre-treatment, fermentation, etc.

Material requirements for NPK blending fertilizer production line: Key elements for efficient production

NPK bulk blend fertilizer (BB fertilizer) is crucial for precision fertilization. Its production quality directly depends on the characteristics of the raw materials. A high-quality NPK blending fertilizer production line has strict requirements for the input materials – only raw materials meeting the standards can guarantee the uniformity and nutrient effectiveness of the final fertilizer.
1.Physical Requirements
Uniform Particle Size (1-4mm optimal): Individual fertilizer particles need very similar sizes (variation within 30%). Recommended materials include rotary drum granulator or extrusion granulated urea, DAP, etc. Avoid directly blending powdered and granular materials.
Moisture Content ≤ 2%: High moisture causes material caking and equipment clogging. Special attention is needed for hygroscopic materials like MOP (muriate of potash) and SOP (sulfate of potash).
Similar Bulk Density: The density difference between components should be within ±20%. Typical density range: 0.9-1.2 g/cm³.

2.Chemical Requirements
Chemical Compatibility: Avoid direct mixing of urea with SSP (single superphosphate) (risk of moisture release). Fertilizers containing nitrate nitrogen are incompatible with liming materials.
Neutral pH: Ideal pH range: 6.5-7.5. Strongly acidic or alkaline materials require pre-treatment.
3.Raw Material Selection Suggestions
Nitrogen Source: Granular urea (large particle), ammonium sulfate (particle size 2-3mm).
Phosphorus Source: MAP (monoammonium phosphate), DAP (diammonium phosphate).
Potassium Source: Granular red MOP (muriate of potash), SOP (sulfate of potash).
Secondary or Micronutrients: Require chelation or coating treatment.
By strictly controlling raw material parameters like particle size, moisture, and density, and by scientifically designing the production process, NPK blending fertilizer production lines can produce high-quality, uniform nutrient, easy-to-apply fertilizers.

Synergistic effect of rotary screener machines, compost turners, and fertilizer compaction machines

In the final stage of organic fertilizer production, the steady rotation of a rotary screener machine is always a common sight. Unlike the vigorous turning and tossing of the upstream fermentation equipment or the forceful extrusion of the downstream granulation equipment, it plays an indispensable role as a “quality inspector” in the entire organic fertilizer production line.

After thorough aerobic fermentation by the large wheel compost turning machine, the material becomes loose and uniform. Subsequently, these raw materials may be processed into granules of specific sizes by a fertilizer compaction machine. However, whether it’s powdered or granular fertilizer, it ultimately needs to undergo fine screening by a rotary drum screen.

When the material enters the rotating drum, the separation process begins quietly. The screen mesh on the inner wall of the drum acts like a precise filter, automatically separating qualified products from substandard ones. Excessively fine powder falls from the lower screen, uniformly sized finished products are collected in the middle, while any excessively large lumps or impurities are directed to the outlet. The entire process is smooth and efficient, requiring no manual intervention yet achieving precise grading.

In the organic fertilizer production equipment system, the rotary screener machine ensures the purity and consistency of the final product, allowing the efforts of the fermentation process and the results of the granulation process to be perfectly presented. This simple and effective sorting method makes the final quality control of organic fertilizer production simple and reliable.

The synergistic effect of chain crushers and ring die pelleting machines in fertilizer production

In the core stage of the bio-organic fertilizer production line, chain crushers and ring die pelleting machines, as key bio-organic fertilizer equipment, have a highly efficient connection that directly determines the molding rate and quality of the granular product. Unlike the initial crushing and fermentation stages of raw materials, these two pieces of equipment focus on fine processing and molding before granulation, and are important supports for achieving large-scale production.

The chain crusher undertakes the task of secondary fine crushing before granulation in the production line. Although the organic fertilizer raw materials have been initially composted after fermentation, some lumps or coarse particles may still remain. If these are directly fed into the granulation stage, it will lead to uneven particle formation and insufficient hardness.

The finely processed raw materials from the chain crusher are then transported to the ring die pelleting machine for molding. As the core granulation equipment in the bio-organic fertilizer production line, the ring die pelleting machine, with its unique ring die and roller structure, processes the raw materials into regular granules through extrusion molding. Its advantages lie in its high molding rate, moderate particle hardness, and adaptability to a variety of composted organic fertilizer raw materials. The resulting granules are not only easy to store and transport but also ensure slow nutrient release. In the entire production line, it forms a seamless connection of “crushing →granulation” with the chain crusher, effectively improving production efficiency.

The synergistic operation of the chain crusher and the ring die pelleting machine demonstrates the advantages of professional equipment matching in bio-organic fertilizer production and provides strong support for standardized and high-quality production in the bio-organic fertilizer production line.

Core control of key equipment in bio-organic fertilizer production

Bio-organic fertilizer production relies on the coordinated operation of a complete set of bio-organic fertilizer equipment, among which mixing and granulation are the core links that determine product quality. As an important piece of equipment in the mixing process, the vertical disc mixer has become the preferred choice for many production lines due to its unique structural advantages.

In bio-organic fertilizer production, the fertilizer mixer plays a crucial role in mixing raw materials. The vertical disc mixer, as a mainstream type, features high mixing uniformity and low energy consumption. During operation, the composted organic fertilizer raw materials, auxiliary materials, and beneficial microbial agents are added in proportion, and the materials are thoroughly mixed through the rotation of the disc. It is necessary to control the feeding speed to avoid material accumulation affecting the mixing effect, and to adjust the mixing speed according to the material humidity to prevent clumping or uneven mixing.

The uniformly mixed materials processed by the vertical disc mixer and other fertilizer mixer machines then need to enter the fertilizer granulator for shaping. The quality of the granulation process is closely related to the mixing effect; uniformly mixed materials ensure consistent nutrient content and sufficient strength of the granules. During production, it is necessary to accurately adjust the speed, pressure, and other parameters of the fertilizer granulator according to the characteristics of the mixed materials, and to use an appropriate moisture content to produce regular, easy-to-store and transport bio-organic fertilizer granules.

In summary, in a bio-organic fertilizer production line, it is necessary to precisely control the operating details of the fertilizer mixer and ensure proper coordination with the fertilizer granulator to consistently produce high-quality bio-organic fertilizer products.

Back To Top