Tag: organic fertilizer granulation machine

Practical Methods for Improving the Granulation Yield of Flat Die Granulators

In organic fertilizer production lines, flat die granulators typically process materials such as livestock and poultry manure and composted straw. These materials contain coarse fiber and experience large moisture fluctuations, which can easily lead to low granulation yields and loose pellets. To improve granulation efficiency, precise optimization in four key areas is necessary, taking into account the characteristics of the organic fertilizer material.

Raw material pretreatment must be tailored to the characteristics of the organic fertilizer. First, the moisture content should be controlled between 25% and 30%, which is the optimal range for organic fertilizer granulation. A moisture content too low can easily result in broken pellets, while a moisture content too high can cause die sticking and clogging. This can be adjusted by airing the material or adding dry straw powder. Secondly, the composted material should be pulverized to ensure that the coarse fiber particle size does not exceed 1/2 the die hole diameter to prevent fibers from wrapping around the die rollers and causing uneven extrusion. Uncomposted lumps should also be removed to prevent clogging. Additionally, 2% to 3% bentonite can be added as a binder to enhance pellet density without affecting the fertilizer’s efficiency.

Equipment adjustments require targeted optimization. Organic fertilizer materials have poor fluidity, so the die roller gap should be adjusted to 0.2-0.4mm, slightly wider than the standard setting, to prevent material from getting stuck. The roller speed should be reduced to 15-20r/min to allow ample time for the coarse fibers to be extruded and formed. For die orifice selection, a tapered die with a diameter of 4-8mm is preferred to reduce material resistance within the die and minimize the likelihood of blockage. Regularly clean the die orifice with a steel brush to remove residual fiber impurities.

Process operations should be tailored to the production scenario. High-temperature preheating is not required before startup. Simply use a small amount of wet material to “prime” the die, forming a thin layer of material on the inner wall of the die orifice to prevent subsequent material from sticking to the wall. Use a spiral feeder with a constant speed to avoid concentrated lumps of material and prevent equipment overload. If fibers are found on the surface of the pellets and they are prone to breakage during production, add binder or adjust the moisture content promptly.

Maintenance should focus on vulnerable areas. Organic fertilizer materials contain corrosive components. The die roller surface should be cleaned weekly, and residual humus should be removed with a wire brush to prevent corrosion. The inner wall of the die hole should be inspected monthly, and burrs caused by coarse fiber wear should be removed with fine sandpaper. The transmission system lubricant should be replaced quarterly, using a corrosion-resistant, specialized oil to prevent component wear caused by humus contamination.

By optimizing these measures for organic fertilizer production lines, the flat die granulator’s pelletizing rate can be increased to over 90%, reducing waste of mature raw materials while ensuring uniform organic fertilizer pellets and ensuring stable and efficient production line operation.

When using windrow compost turning machines in different seasons, pay attention to key details

windrow compost turning machine isn’t a one-size-fits-all model. Adjusting details according to the season will ensure smooth fermentation of your organic fertilizer.

Spring’s high humidity and fluctuating temperatures can easily lead to a musty odor in the compost. When using a compost turner, increase the frequency of turning the compost. Instead of turning every two days, turn every 1.5 days in spring. Loosen the compost to allow moisture to escape, and monitor the temperature. If the temperature is below 50°C, slow the compost turner’s speed to allow for a more thorough turning, allowing microbial activity to raise the temperature.

Summer temperatures are high, and the compost easily overheats (over 70°C kills beneficial bacteria). Reduce the depth of each turning to avoid bringing all the hot material below to the surface. Turn the compost once a day. Sprinkle a thin layer of soil on the surface after each turning to provide shade and reduce temperatures while preventing rapid evaporation.

Autumn is dry, and the pile is prone to dehydration and cracking. Use a windrow compost turning machine with an atomizer, spraying small amounts of water as you turn to maintain a humidity level of 50%-60%. Slow the turning speed to allow the water and raw materials to mix thoroughly and avoid patches of dryness or wetness.

Winter is cold, and the pile struggles to heat up. Reduce turning frequency to once every three days, avoiding frequent turning to disperse heat. When turning, pile the pile higher (1.2-1.5 meters). Try turning the cold material in the center with the windrow compost turning machine, covering the hot material on the outside to help retain heat and ferment.

How to adapt a BB fertilizer blender to different raw material characteristics?

BB fertilizer raw materials come in a variety of forms (granular, powdered, and fiber-containing). BB fertilizer blenders require targeted adjustments to accommodate these different raw material characteristics and avoid mixing problems.

For pure granular raw materials (such as urea and diammonium phosphate granules), which have relatively small density differences but are prone to rolling and stratification, the BB fertilizer blender should be equipped with guide plates within the mixer drum to guide the raw materials into upward and downward circulation and control the feed order. Adding the denser diammonium phosphate first, followed by the lighter urea, can reduce initial stratification. The speed can be appropriately reduced in the later stages of mixing to prevent excessive collisions between particles that could lead to breakage.

If the raw materials contain powdered ingredients (such as potassium chloride powder or trace element powder), a dustproof seal should be installed at the BB fertilizer blender feed port to prevent dust from escaping. Additionally, an atomizing humidifier (control the humidity to ≤15%) should be installed within the mixer drum. A small amount of humidification can enhance adhesion between the powdered raw materials and the granules, preventing dust from becoming suspended.

When the raw materials contain fiber organic fertilizer (such as fermented straw powder), it is necessary to use a paddle with a shearing function to prevent the fibers from entangled and clumping. At the same time, the fiber raw materials should be crushed to less than 3mm in advance to reduce mixing resistance. During the mixing process, the machine can be stopped and observed every 3 minutes. If fiber clumps are found, the paddle angle needs to be adjusted to enhance the shearing and dispersion effect to ensure that the fibers and granular fertilizer are fully integrated.

Controlling pellet strength in ring die granulators: Key to fertilizer transportation and storage

Pellet strength is a core performance indicator for fertilizer products. Ring die granulators require multi-step control to ensure pellets can withstand the pressure of transportation and stacking, minimizing breakage and loss.

First, consider the raw material ratio. If the organic matter content in production is too high (over 60%), binders such as clay and bentonite should be added (control the amount to 3%-5%) to increase the viscosity of the raw materials and lay the foundation for pellet strength.

If the proportion of inorganic fertilizer is high, the moisture content of the raw materials should be controlled between 14% and 16% to avoid pellet brittleness caused by too low a moisture content and easy sticking to the ring die granulator due to too high a moisture content.

Selecting the ring die granulator compression ratio is also crucial. The compression ratio (the ratio of the ring die aperture to the effective thickness) should be adjusted according to the fertilizer type. For organic fertilizers with high fiber content, a low compression ratio of 1:8-1:10 is recommended to prevent pellets from being too hard and easily broken. For compound fertilizers, a high compression ratio of 1:12-1:15 is recommended to enhance pellet density. During production, regular spot checks can be performed using a pellet strength tester. If the strength is insufficient, the steam supply to the conditioner can be temporarily increased (by 10%-15%).

In addition, the gap between the roller and the ring die should be controlled within a range of 0.1-0.3mm. A gap too large will cause the raw material to slip, resulting in insufficient pellet density; a gap too small will increase wear and affect pellet consistency. By synergistically controlling these three factors, the compressive strength of fertilizer pellets can be stabilized at above 20N, meeting transportation and storage requirements.

How to Improve the Efficiency of a New Two-in-One Organic Fertilizer Granulator

The efficiency of a new type two-in-one organic fertilizer granulator directly affects the production capacity of an organic fertilizer production line. Improper operation can easily lead to problems such as slow granulation and low pelletizing yield. Four optimization strategies can improve both efficiency and quality.

First, proper raw material pretreatment is essential. Strict control of raw material particle size and moisture is crucial: crush the fermented organic fertilizer into a 40-60 mesh fine powder to prevent coarse particles from blocking the equipment’s feed inlet and affecting mixing uniformity. The moisture content should be maintained at a stable 25%-35%. Adjust moisture content by drying or adding dry materials; spray water if too low.

Second, precise adjustment of equipment parameters is crucial. During the mixing process, adjust the agitator speed according to the raw material type: when processing high-fiber raw materials (such as straw fertilizer), adjust the speed to 50-60 rpm to increase shear force; when processing highly viscous raw materials (such as chicken manure fertilizer), reduce the speed to 20-30 rpm to prevent material from sticking to the wall. During the pelletizing process, the pelletizing method should be adjusted to suit different raw materials: for high-viscosity raw materials, use agitator pelletizing, adjusting the disc inclination to 40°-45°; for high-fiber raw materials, use roller compaction pelletizing, increasing the die pressure appropriately.After parameter adaptation, the granulation efficiency of the new type two-in-one organic fertilizer granulator can be increased by 20%-25%, and the granule forming rate is stabilized at more than 90%.

Furthermore, daily maintenance is essential. Before starting the machine daily, inspect the agitator blades and pelletizing die for wear. If blade edge wear exceeds 3mm or the die aperture is deformed, replace them promptly to avoid uneven mixing and uneven pellet sizes caused by aging components. Clean residual material inside the equipment weekly, especially the mixing chamber and the inner wall of the pelletizing disc, to prevent material agglomeration that affects subsequent production. Lubricate transmission components such as bearings and gears monthly to reduce mechanical friction and extend equipment operation.

Finally, optimizing production processes can further improve efficiency. The “immediate recycling of screen residue” model allows the screening of substandard fines directly back to the mixing system through a reflux channel, eliminating the need for manual transfer and reducing waiting time for raw materials. If the organic fertilizer production line requires continuous operation, a raw material buffer can be configured to ensure uninterrupted feeding of raw materials, avoiding frequent equipment starts and stops due to material shortages. After process optimization, the equipment’s effective daily production time can be increased by 2-3 hours, increasing overall production capacity by approximately 15%.

The new type two-in-one organic fertilizer granulator’s complete operating process.

The new type two-in-one organic fertilizer granulator features an integrated “mixing + granulation” design, simplifying organic fertilizer production. Its operations are centered around four core steps, ensuring pellet quality and efficiently supporting the organic fertilizer production line.

The first step is raw material pretreatment. Fermented organic fertilizer (such as livestock manure and composted straw) must first be crushed to a 40-60 mesh fine powder with a moisture content of 25%-35%. Excessively coarse raw materials will result in uneven granulation, while inappropriate moisture content will affect the final product. Meeting pretreatment standards is essential for stable equipment operation.

The second step is the core mixing process. Pretreated raw materials enter the integrated mixing system. A high-strength alloy steel agitator shaft drives the wear-resistant blades, while a variable frequency motor precisely controls the speed between 20-60 rpm. If binders such as bentonite are required, they are added simultaneously. The blades shear and stir the powder, achieving over 90% mixing uniformity within 5-10 minutes, preventing uneven nutrient distribution in the pellets.

The third step is targeted granulation. The mixed material automatically enters the granulation system, where the equipment changes its forming method based on the raw material’s characteristics. Highly viscous raw materials (such as chicken manure organic fertilizer) use a stirring granulation mechanism, where paddles knead the material into 2-4mm pellets. High-fiber raw materials (such as straw organic fertilizer) use a roller-type granulation mechanism, where die extrusion forms the pellets. The stainless steel disc can be hydraulically adjusted from a 30° to 50° tilt angle, and a wear-resistant rubber lining reduces sticking to the wall. The pellet formation rate exceeds 90%, and the pellets are uniformly shaped.

Finally, the screen residue is recycled and connected. After granulation, the pellets pass through an integrated screening device. Qualified pellets enter the drying stage (dried to a moisture content of less than 10%), while substandard fines are returned to the mixing system through a recirculation channel for processing with new raw materials. This design achieves a raw material utilization rate exceeding 95%, reducing waste and ensuring continuous production.

The entire process eliminates the need for frequent manual handling. The new type two-in-one organic fertilizer granulator can complete the entire process from raw material input to qualified pellet output, significantly improving the efficiency and convenience of organic fertilizer production.

Drum fertilizer cooler selection: Consider key dimensions and avoid common mistakes

Choosing the right drum fertilizer cooler not only ensures effective material cooling but also reduces subsequent operating costs. However, when selecting a drum fertilizer cooler, it’s easy to fall into the trap of focusing solely on throughput, overlooking key factors like material properties and operating requirements.

First, clarifying the material properties is essential. Differences in moisture, particle size, and viscosity between materials directly impact cooling performance. For example, high-humidity materials tend to adhere to the drum’s inner walls, so a model with internal scrapers or special liners should be selected to prevent material accumulation. For fine powders, sealing performance is crucial to prevent dust leakage during cooling, requiring efficient, sealed feed and discharge devices. Ignoring material properties can lead to uneven cooling and equipment blockage, even if the throughput is appropriate.

Second, determine the cooling method based on cooling requirements. If the material needs to be cooled quickly and has no special requirements for the cooling medium, forced air cooling can be chosen to improve cooling efficiency by increasing air volume. If the material temperature is extremely high (over 600°C) or needs to be protected from air contact, jacket cooling is preferred. This uses thermal oil or cold water for indirect cooling, minimizing material contact with the outside world.

Finally, drum fertilizer cooler parameters should be tailored to the operating conditions. Consider the workshop space (determining drum length and diameter), power supply voltage (matching drive motor parameters), and ease of maintenance (ease of disassembly and cleaning). For example, if workshop height is limited, a horizontally arranged short-drum machine may be appropriate. If continuous production is essential, a machine with fault alarms and automatic cleaning features should be selected to minimize downtime for maintenance.

Advantages of Rotary Drum Granulators over Disc Granulators

When selecting organic fertilizer granulation equipment, both rotary drum and disc granulators are commonly used. However, rotary drum granulators, with their multi-dimensional performance advantages, better meet the efficiency and scale requirements of modern organic fertilizer production lines. The differences between the two are primarily reflected in the following four aspects.

More flexible capacity adaptability meets the needs of large-scale production. Disc granulators are limited by the diameter of their discs, typically with an hourly output of 0.5-5 tons per unit, making them suitable only for small production lines. By adjusting the drum length and diameter, rotary drum granulators can achieve hourly outputs of 1-20 tons per unit. They meet the basic production needs of small and medium-sized enterprises as well as the large-scale production of large factories. They eliminate the need for multiple units in parallel, reducing production line floor space and equipment investment costs.

They offer greater raw material compatibility and reduce pretreatment complexity. Organic fertilizer raw materials have large fluctuations in moisture and composition. Disc granulators must maintain a moisture content of 20%-30%. They also struggle with crude fiber materials, which tend to stick to the disc and produce uneven granules. Rotary drum granulators can process materials with moisture levels of 25%-40%. Leveraging the multi-directional force of the rotating drum, they can smoothly granulate composted straw, livestock manure, and other materials without the need for additional crushing or conditioning, streamlining the process.

The resulting product is more stable and meets standardized requirements. Due to the single direction of centrifugal force, disc granulators produce pellets with a roundness of 70%-80% and large particle size variations. Rotary drum granulators, on the other hand, utilize internal rollers to guide and rotate the pellets, resulting in a fully rolling and shaping process with a roundness exceeding 90% and a precisely controlled particle size of 2-5mm. Furthermore, the granulation process is gentle, does not damage organic matter, and the pellets are of moderate strength. Transportation losses are 15%-20% lower than those from disc granulators.

Operation and maintenance are also simplified, resulting in lower long-term costs. Disc granulators require frequent manual adjustments of inclination and speed, resulting in wear and tear on the disc edges and requiring frequent replacement. Rotary drum granulators, on the other hand, utilize automated control to precisely adjust speed and feed rate, eliminating the need for manual oversight. The drum is constructed of wear-resistant stainless steel, resulting in a 40% lower failure rate and over 30% lower maintenance costs, resulting in superior long-term economics.

In summary, the advantages of the rotary drum granulator in terms of production capacity, raw material compatibility, finished product quality, and cost control make it ideally suited to the diverse needs of organic fertilizer production lines, making it an ideal choice for improving efficiency and competitiveness.

Large wheel compost turners: A super assistant for organic waste treatment

Large wheel compost turners make organic waste treatment more efficient and convenient, injecting a powerful impetus into environmental protection efforts and sparking curiosity about their many advantages.

1. Efficiently Breaks Agglomerated Materials

In organic waste treatment, materials such as livestock and poultry manure and straw often clump. The large wheel compost turner’s blades easily cut through these agglomerated materials. Whether it’s hard straw clumps or sticky livestock and poultry manure lumps, the blades quickly break them down into fine particles.

2. Deep Compost Turning Meets Diverse Needs

Large wheel compost turners typically reach a turning depth of 1.5 to 3 meters, making them suitable for organic waste fermentation projects of varying sizes and types. For large-scale organic waste treatment projects, they can penetrate deep into the bottom layer of the pile and turn the underlying material to the upper layer, ensuring sufficient oxygen supply and uniform fermentation throughout the entire pile. For small gardening farms and family farms, the turning depth can be flexibly adjusted based on actual needs to ensure effective fermentation.

3. Energy-saving Design Reduces Operating Costs

Some large wheel compost turners utilize advanced energy-saving features such as variable frequency drive. This design automatically adjusts the motor speed and power during operation based on the material’s condition and actual needs. When handling lighter, looser materials, the motor automatically reduces speed to reduce energy consumption; when handling harder, denser materials, the motor speed is increased appropriately to ensure effective turning.

The Core Reasons to Choose a Rotary Drum Granulator for Organic Fertilizer Production Lines

In the granulation stage of organic fertilizer production lines, rotary drum granulators are the preferred equipment for most companies due to their high adaptability to the characteristics of organic fertilizers. Their unique operating principle and performance advantages effectively address key challenges in the granulation process, ensuring product quality and production efficiency.

In terms of granulation adaptability, rotary drum granulators perfectly match the characteristics of organic fertilizer raw materials. Organic fertilizer raw materials, mostly livestock and poultry manure and composted straw, have complex compositions and contain a large amount of fiber. The rotary drum granulator uses the centrifugal force, extrusion force, and friction generated by the rotating drum to granulate loose raw materials without excessive compression, thus preventing the destruction of organic matter and functional microbial activity in the raw materials due to strong compression. The rotary drum granulator also adapts to fluctuations in raw material moisture content (it can handle raw materials with a moisture content of 25%-40%), reducing the tedious pre-treatment process.

The advantages in granulation efficiency and finished product quality are significant. The drum length and diameter of the rotary drum granulator can be flexibly designed to meet production capacity requirements. A single unit can achieve an output of 1-20 tons/hour, meeting the needs of production lines of varying sizes. Its granulation process is gentle and uniform, resulting in highly rounded granules (over 90% roundness). The particle size can be controlled between 2-5mm by adjusting the drum speed and the baffle, meeting standard requirements for organic fertilizer granules. The granules also possess moderate strength, preventing breakage during transportation while slowly disintegrating in the soil, enhancing nutrient release efficiency.

From a cost and environmental perspective, the rotary drum granulator is also competitive. Its simple structure, minimal transmission components, and low failure rate mean ongoing maintenance costs are approximately 30% lower than those of other granulation equipment (such as disc granulators and extrusion granulators). Furthermore, the granulation process does not require the addition of large amounts of binders; granulation is achieved solely through the raw material’s inherent viscosity. This reduces raw material costs while preventing the impact of foreign matter on the purity of the organic fertilizer, aligning with green production principles.

The comprehensive advantages of the rotary drum granulator in adaptability, efficiency, cost and environmental protection make it an ideal choice for the granulation link of the organic fertilizer production line, providing strong support for enterprises to achieve high-quality and high-efficiency production.

Back To Top