The three core types of fertilizers: Characteristics and applications

Fertilizers are the “nutritional cornerstone” for crop growth, and scientifically classifying fertilizer types is a prerequisite for rational fertilization. Based on their source, composition, and mechanism of action, fertilizers can be mainly divided into three categories: organic fertilizers, chemical fertilizers, and bio-organic fertilizers.

Organic fertilizers originate from animal and plant residues or decomposed waste. Their raw materials include livestock manure, crop straw, distiller’s grains, and kitchen waste, which are fermented and decomposed through organic fertilizer production lines to provide comprehensive nutrients. Organic fertilizers not only contain macronutrients such as nitrogen, phosphorus, and potassium, but are also rich in micronutrients and organic matter. They are characterized by their mild and long-lasting effect, improving soil structure, promoting microbial activity, and enriching soil fertility with long-term use, making them suitable for base fertilization of various crops.

Chemical fertilizers are produced through industrial synthesis or mineral processing and are one of the mainstream fertilizers in modern agriculture. Based on nutrients, they can be divided into nitrogen fertilizers, phosphorus fertilizers, potassium fertilizers, and NPK compound fertilizers. NPK compound fertilizers are often precisely formulated and processed by NPK fertilizer production lines, providing single nutrients at high concentrations. Chemical fertilizers are characterized by their fast and direct effect, quickly alleviating nutrient deficiencies in crops and precisely meeting the nutrient needs of crops at different growth stages.

Bio-organic fertilizers, as an important category of high-quality organic fertilizers, can be specially processed by bio-organic fertilizer production lines, better preserving beneficial microorganisms and active ingredients. Their core components can activate fixed nutrients in the soil, inhibit harmful pathogens, and promote crop root development and improve nutrient absorption efficiency. They are characterized by being green and environmentally friendly, and are often used in combination with organic fertilizers and chemical fertilizers to help achieve improved quality, increased efficiency, and sustainable farming.

Practical applications of chain compost turning machines and flat die pelleting machines in production

In modern organic fertilizer production, an efficient organic fertilizer production equipment system is continuously improving product stability and value through technological innovations in pre-treatment and post-forming stages. Fermentation and forming are two key nodes, and the selection of core equipment directly affects the operational efficiency of the entire production line.

During the raw material fermentation stage, chain compost turning machines demonstrate unique advantages in handling large-tonnage materials. Their robust chain plate structure can penetrate deep into thick material piles, achieving powerful turning and displacement. Compared to common equipment, this design is particularly suitable for the deep processing of sticky, fibrous organic materials, ensuring not only uniform fermentation and sufficient oxygen supply but also significantly increasing processing capacity per unit time.

When the matured raw materials enter the mixing process, the fertilizer mixer plays the role of a “homogenizer.” Through efficient mixing, it ensures the uniform distribution of microbial agents, nutrients, and other functional additives in the material. Precise control in this stage is a crucial prerequisite for ensuring consistent quality across batches of products.

In the granulation and molding process, the flat die pelleting machine stands out due to its unique process adaptability. This technology is particularly suitable for producing organic fertilizer products with special requirements for particle firmness. The finished product is characterized by its resistance to breakage and good slow-release effect, demonstrating significant advantages in specific application scenarios.

From the efficient fermentation of the chain compost turning machine to the precise mixing of the fertilizer mixer, and then to the powerful molding of the flat die pelleting machine, the organic combination of these specialized organic fertilizer production equipment forms a modern production line with strong adaptability and diverse product structures.

Common types of bio-organic fertilizers: Adapting to production lines and equipment

Bio-organic fertilizers are environmentally friendly and have long-lasting effects, making them a core fertilizer in modern agriculture. Their diverse types depend on bio-organic fertilizer production lines and supporting equipment. They can be precisely classified according to raw material source, functional characteristics, and dosage form. Different types have varying nutrient compositions and application scenarios, requiring selection based on specific planting needs.

Based on raw material source, livestock and poultry manure-based fertilizers are the most common, using chicken manure, cow manure, etc., as raw materials, fermented through bio-organic fertilizer production lines. They are high in organic matter, improve soil compaction, and are suitable for a wide range of applications including field crops and fruits and vegetables. Straw and fungal residue-based fertilizers use straw and fungal residue as raw materials, rich in fiber to improve soil aeration, and are suitable for improving clayey soils.

Based on functional characteristics, functional microbial fertilizers add nitrogen-fixing bacteria, phosphorus-solubilizing and potassium-solubilizing bacteria, etc., to address soil nutrient imbalances and crop diseases, suitable for barren or continuously cropped land. Amino acid-based fertilizers add amino acid components, providing quick results, suitable for crop seedling and fruit development stages. Both types require precise control of components using bio-organic fertilizer equipment to ensure fertilizer efficiency.

Based on dosage form, powdered fertilizers dissolve quickly and are suitable for irrigation and broadcasting; granular fertilizers, processed by rotary drum granulators, are easy to store and transport, have long-lasting effects, and are suitable for mechanical fertilization and large-scale planting. Precisely matching the type to the needs maximizes the value of bio-organic fertilizers.

NPK fertilizer mixing guide: Key points for controlling uniformity

The uniformity of NPK fertilizer blending directly determines the stability of its effectiveness and is a critical link in the production of high-quality compound fertilizers on NPK fertilizer production lines. Blending requires considering raw material characteristics, operating procedures, and equipment suitability to avoid nutrient stratification and excessively high local concentrations.

Raw material pretreatment. Nitrogen, phosphorus, potassium, and trace element raw materials should be crushed separately to 80-100 mesh to ensure uniform particle size and prevent sedimentation; moisture content should be controlled at 8%-12% to avoid caking or excessive dust affecting mixing. Impurities should also be removed to protect core equipment such as fertilizer mixers and ensure product purity.

Controlling mixing sequence and proportion accuracy. Follow the principle of “fine before coarse, light before heavy, and pre-mixing small amounts of auxiliary materials”: first add fine and light raw materials such as urea to the fertilizer mixer machine, then add coarse and heavy raw materials such as potassium chloride; small amounts of auxiliary materials such as trace elements should be pre-mixed and diluted with fine materials before being added to the main system to prevent local enrichment.

Equipment operation and time control. Prioritize the use of a double shaft paddle mixer, controlling the rotation speed at 25-35 r/min, and adjusting the mixing time to 5-10 minutes according to the amount of raw materials to avoid insufficient or excessive mixing (excessive mixing can easily lead to stratification). Discharge the material promptly after mixing to reduce the residence time in the equipment and prevent secondary caking.

Mixing quality verification. Sampling should be conducted using the “quartering method” to ensure that the nutrient variation coefficient is ≤5%; if the standard is not met, check the raw material pretreatment, mixing sequence, or fertilizer mixer parameters, and optimize and adjust accordingly.

The Cost of Establishing a Urea Manufacturing Plant in 2026

The cost of establishing a urea manufacturing plant in 2026 exhibits significant variability, primarily shaped by three core factors: the adopted technology (conventional versus green), production capacity, and the level of automation. From large-scale industrial facilities catering to global agricultural demand to small-scale regional operations, the investment range spans from millions of dollars to as low as ten thousand dollars. Additionally, external factors such as feedstock prices, green technology premiums, and geopolitical influences further impact the overall cost landscape. A clear understanding of these cost components is essential for investors and industry players planning urea production projects.

Industrial-scale urea plants, designed for large-volume commercial production and international supply, require substantial capital investment. Among these, green urea plants, which adopt environmentally friendly technologies like electrolysis and renewable energy, represent a higher-cost option. A modern green urea plant with an annual capacity of approximately 220,000 tons is estimated to demand a total capital investment of around $510.79 million. For existing industrial facilities seeking expansion, the cost is relatively lower but still considerable. Expanding the daily capacity of an existing production line by 6–8% typically ranges between $80 million and $90 million. In terms of operational costs, the marginal production cost of urea post-construction is projected to be about $325 per ton, though this figure can surge to $400–$500 per ton depending on fluctuations in natural gas prices.

Small to medium-scale urea manufacturing plants, which focus on regional blending and granulation operations rather than full synthesis, feature significantly lower costs centered on equipment lines. Large-scale NPK/urea granulation lines with a production capacity of 18–25 tons per hour, capable of producing high-quality pellets, cost between $400,000 and $550,000. For new manufacturers with limited budgets, small to medium lines with a capacity of 1–6 tons per hour are more feasible, with setup costs ranging from $100,000 to $200,000. At the lowest end of the spectrum, basic mini turnkey urea or fertilizer blending units are available for $10,000 to $48,000, suitable for small-scale local agricultural needs.

Several key factors will drive urea plant costs in 2026. Feedstock, particularly natural gas, is the dominant cost component, accounting for 70% of total urea production costs. Despite some projections of a potential downward trend in global LNG prices due to increased supply, the original industry outlook anticipates rising natural gas prices in 2026 amid growing global LNG demand, which will push up baseline production costs. Green technology also carries a significant premium, with the levelized cost of green urea processes approximately 62% higher than conventional methods, mainly due to the high electricity demands of electrolysis and renewable energy systems. Geopolitical factors and import tariffs further exacerbate costs; certain chemicals and parts required for plant construction are expected to face 12–18% import tariffs in 2026, potentially increasing both construction and future repair expenses.

In summary, the cost of establishing a urea manufacturing plant in 2026 is highly context-dependent. Industrial-scale facilities, especially green ones, demand massive capital investment, while small to medium-scale operations offer more budget-friendly options. Meanwhile, natural gas prices, green technology premiums, and geopolitical tariffs will continue to be critical cost drivers. By carefully evaluating production scale, technology choices, and external cost factors, stakeholders can make more informed decisions to optimize investment returns and adapt to the evolving market environment.

Equipment Selection for Integrated Fertilizer Production

For investors considering a diversified fertilizer operation beyond urea, the selection of appropriate professional fertilizer manufacturing equipment is paramount. A comprehensive npk fertilizer production line often begins with a precise npk blending machine or npk bulk blending machine to create the base powder formulation. The subsequent granulation stage offers multiple technology paths. A traditional and versatile choice is the disc granulator, often deployed within a complete disc granulation production line where the disc granulator for shaping forms spherical granules through a tumbling action. For producing harder, more dense granules via compaction, a double roller press granulator or a complete roller press granulator production line is the optimal solution. The specific npk fertilizer production process dictates whether a fertilizer granulator based on agitation or extrusion is selected.

This equipment ecosystem extends into organic and bio-fertilizer manufacturing. A stand-alone organic fertilizer production line typically requires a windrow composting machine (or windrow machine) for efficient aerobic fermentation prior to granulation. To incorporate beneficial microbes, this evolves into a bio organic fertilizer production line. Here, the final granulation step might utilize a specialized npk fertilizer granulator machine equipment adapted for organic materials or, alternatively, an disc granulator machine known for its gentle shaping action that preserves microbial viability.

Ultimately, the capital and operational costs for these lines vary significantly based on capacity and technology sophistication. Integrating these granulation systems allows a single facility to produce a range of nitrogen-based, NPK compound, and organic fertilizers, providing strategic flexibility to adapt to regional market demands and raw material availability.

Unlocking the key to high-efficiency operation of organic fertilizer production lines

The continuous efficiency and product qualification rate of organic fertilizer production lines depend critically on the suitability of the core organic fertilizer production equipment. The drum fertilizer dryer, as the “efficiency hub” of post-processing, not only undertakes the core task of material dehydration but also connects the preceding and succeeding processes, solving bottlenecks and providing crucial support for large-scale production.

Its core value lies in “efficient dehydration + process integration.” After granulation, the moisture content of organic fertilizer granules reaches 20%-30%. If drying is not timely, clumping and mildew can occur, disrupting the process. The drum fertilizer dryer, through the rotation of the inclined drum and the turning action of internal baffles, ensures sufficient contact between the material and hot air for uniform dehydration, precisely controlling moisture content to a safe range of 12%-14%. With a processing capacity of several tons to tens of tons per hour, it is perfectly suited for continuous operation of the production line.

As a key piece of organic fertilizer production equipment, its adaptability is extremely strong. Whether it’s livestock and poultry manure, straw-based organic granules, or organic-inorganic compound granules, it can be adapted by adjusting the hot air temperature and drum rotation speed, preventing high temperatures from damaging nutrients while ensuring effective drying. At the same time, it seamlessly connects with organic fertilizer granulators, coolers, and screening machines, forming a closed-loop process, reducing transportation losses and improving the overall efficiency of the production line.

For large-scale, standardized organic fertilizer projects, the drum fertilizer dryer is a core component for improving overall efficiency. Its stable operation can significantly reduce the rate of product re-moisturization, improve the qualification rate, shorten the production cycle, and contribute to the efficient and low-cost operation of the organic fertilizer production line.

What are the raw materials for NPK?

NPK fertilizers, which supply the three essential macronutrients—Nitrogen (N), Phosphorus (P), and Potassium (K)—to support plant growth, are formulated using a diverse range of raw materials. These materials are primarily derived from two major sources: industrial synthesis, which is the main route for nitrogen production, and mineral mining, the primary source for phosphorus and potassium. Additionally, manufacturers incorporate various additives and fillers to refine the fertilizer’s properties. Understanding these raw materials is key to grasping how NPK fertilizers are manufactured and tailored to meet different agricultural needs.

Nitrogen, a critical nutrient for foliage growth, is uniquely sourced through industrial synthesis rather than mining. The cornerstone of nitrogen production is the Haber-Bosch process, which extracts nitrogen gas from the air and combines it with hydrogen (typically derived from natural gas) to produce ammonia. Ammonia serves as the fundamental building block for all major nitrogen-rich raw materials. Urea, the most widely used high-nitrogen source (containing 46% nitrogen), is created by reacting ammonia with carbon dioxide. Ammonium salts, including ammonium nitrate, ammonium sulfate, and ammonium chloride, are another class of nitrogen sources derived from ammonia. Calcium nitrate, valued for its high solubility, is also produced using ammonia as a key raw material, making it suitable for crops requiring quick nitrogen uptake.

Phosphorus, essential for root development and flowering, is sourced from phosphate rock, a mineral found in geological deposits that requires mining. Raw phosphate rock is insoluble in water, so it must undergo chemical treatment with acids to convert it into plant-available forms. Phosphoric acid, a vital intermediate in phosphorus fertilizer production, is made by reacting phosphate rock with sulfuric acid. Superphosphates, including Single Superphosphate (SSP) and Triple Superphosphate (TSP), are produced by treating phosphate rock with sulfuric or phosphoric acid respectively, with TSP offering a higher phosphorus concentration. Ammonium phosphates, such as Monoammonium Phosphate (MAP) and Diammonium Phosphate (DAP), are dual-nutrient raw materials formed by reacting ammonia with phosphoric acid, providing both nitrogen and phosphorus to streamline fertilizer formulation.

Potassium, which enhances plant resilience to stress and improves fruit quality, is obtained from potash minerals found in ancient seabed or salt deposits. The most widely used potassium source is Potassium Chloride, also known as Muriate of Potash (MOP), which contains approximately 60% potassium. For crops sensitive to chloride, such as strawberries, potatoes, and citrus fruits, Potassium Sulfate (Sulfate of Potash/SOP) is the preferred raw material. Potassium Nitrate is another important potassium source that also provides nitrogen, making it a versatile choice for crops with simultaneous needs for both nutrients.

Beyond the three core macronutrient sources, NPK fertilizers include additives and fillers to optimize their performance. Binders like molasses, lignosulfonate, or clay are added to form stable granules, ensuring uniform application. Fillers and conditioners, such as bentonite or limestone powder, adjust the fertilizer’s weight, prevent clumping during storage, and help manage soil pH. In some formulations, trace amounts of micronutrients like iron, zinc, copper, or manganese are incorporated to address specific soil deficiencies, completing the balanced nutrient profile of NPK fertilizers. Together, these raw materials form the basis of NPK fertilizers, enabling the tailored delivery of essential nutrients to support healthy plant growth across diverse agricultural settings.

From Raw Materials to Finished Granules: The NPK Production Process

The carefully selected raw materials must then be transformed into a consistent, easy-to-apply product through a systematic npk fertilizer manufacturing process. The first stage of the manufacturing of npk fertilizer typically involves precise dry blending. Here, powdered materials are accurately proportioned and homogenized using a npk bulk blending machine or a standard npk blending machine. For facilities producing blended fertilizers without granulation, this final mixture from a bulk blending fertilizer machine is ready for bagging. However, to produce dust-free, hard granules with improved nutrient release profiles, the blended powder must undergo granulation.

The core of a modern npk fertilizer production line is the granulation unit. Advanced fertilizer granulation technology offers multiple paths. The most common method involves an npk granulation machine that utilizes a wet process, where a liquid binder is sprayed onto the tumbling powder in a rotary drum or pan to form granules. Alternatively, dry granulation processes, such as compaction using a roller press, are employed to create granules without added moisture, which is ideal for certain moisture-sensitive raw material blends. The selection of the appropriate npk granulation machine technology and complementary npk fertilizer granulator machine equipment is critical, as it determines the production capacity, granule strength, size uniformity, and ultimately the efficiency of the entire npk fertilizer granulator machine system.

Following granulation, the production line includes drying, cooling, screening, and coating steps to achieve a stable, market-ready product. This integrated approach ensures that the precise nutrient ratios formulated during blending are locked into each granule, providing farmers with a reliable and effective tool for crop nutrition management.

Core Value and Application Analysis of Coating Machines

In numerous industries such as food preservation, pharmaceutical protection, electronic protection, daily necessities packaging, and chemical product sealing, surface protection and appearance optimization are key to enhancing product competitiveness. Laminating machines (also known as film packaging machines or film coating machines), as automated equipment for coating product surfaces, have become core equipment for packaging upgrades across various industries due to their high efficiency, wide adaptability, and stable coating quality. By covering the product surface with a thin film, it enhances the product’s moisture-proof, dust-proof, and corrosion-proof properties, while also improving the product’s appearance and packaging protection, providing comprehensive protection for product storage, transportation, and sales.

The stable and efficient operation of laminating machines relies on a scientifically sound structural design, with each core system working in tandem to form a complete laminating operation system. The conveying system is the foundation of material flow, typically employing belt conveyors or chain conveyors, which accurately and smoothly transport products to be coated to the designated laminating station, ensuring the continuity of the operation. The film supply system consists of a film roll, a film guiding mechanism, and a film tension adjustment device. It ensures a continuous and stable supply of film while maintaining a smooth, wrinkle-free surface through tension adjustment, laying the foundation for high-quality lamination. The heating system uses heating tubes and infrared heating lamps to precisely control the temperature, heating the film to a softened state for excellent adhesion. The forming system uses molds or hot air to shape the softened film to fit the product, ensuring a perfect fit. The cooling system intervenes quickly after lamination, using air or water cooling to rapidly set the film, improving lamination adhesion and surface smoothness. The control system uses PLC or microcomputer control to achieve fully automated management of equipment speed, temperature, and workflow, while also featuring fault detection to ensure stable operation. The safety protection system is equipped with emergency stop switches and safety doors, providing comprehensive protection for operators.

The laminating machine’s working principle is clear and efficient, with fully automated control ensuring both lamination quality and efficiency. During operation, the product to be laminated is first precisely delivered to the laminating station via a conveyor system. Simultaneously, the film supply system pulls the film out at a uniform speed, and after being guided by a film guiding mechanism, it is smoothly applied to the product surface. Then, the heating system activates, heating the film to a softened state. The forming system works concurrently, using mold bonding or hot air shaping to ensure the softened film adheres tightly to the product surface. After bonding, the cooling system quickly activates to cool and set the laminated product, ensuring a firm bond between the film and the product, thus completing the entire laminating process. The entire process is automated under the control system, requiring minimal manual intervention, ensuring consistent laminating quality and significantly improving operational efficiency.

The unique structure and working principle give the laminating machine many significant advantages, enabling it to adapt to the complex packaging needs of various industries. High efficiency is its core competitiveness; the equipment can achieve continuous laminating operations, greatly improving production efficiency and adapting to large-scale production rhythms. Its exceptional adaptability is another major highlight. By adjusting the mold or forming parameters, it can adapt to products of different shapes and sizes, achieving high-quality lamination for regular box-shaped, cylindrical, and irregularly shaped products. This high-quality lamination benefits from precise temperature and speed control, ensuring a tight bond between the film and the product, excellent sealing performance, and a smooth, even appearance, effectively enhancing the product’s market competitiveness. The fully automated operation mode significantly reduces manual operation, lowering labor costs and human error. The equipment also features a user-friendly interface with simple and easy-to-understand parameter settings, facilitating operation and maintenance. Furthermore, a comprehensive safety protection system ensures operator safety, and the equipment operates stably with a low failure rate, further improving enterprise production efficiency.

From snack packaging in the food industry and medicine box lamination in the pharmaceutical industry to component protection in the electronics industry and product beautification in the daily necessities industry, laminating machines, with their core advantages of high efficiency, stability, and flexibility, have become essential equipment for packaging upgrades across various industries. Against the backdrop of ever-increasing consumer demands for product quality and appearance, this automated equipment, which combines protection and aesthetics, not only helps companies enhance their product competitiveness but also drives the packaging industry toward efficiency, precision, and automation, providing strong support for the high-quality development of various industries.

Enhancing Fertilizer Products Through Advanced Finishing

While laminating machines serve industries focused on consumer goods, a conceptually similar finishing process is crucial in the fertilizer industry: coating. The protective coating of fertilizer granules is a key final step in modern professional fertilizer manufacturing equipment, enhancing product stability and performance.

This coating process is typically integrated into a complete npk fertilizer production line or organic fertilizer production line. Within the npk fertilizer production process, it occurs after the granulation stage. The process begins with precise formulation using an npk blending machine or npk bulk blending machine. The blend is then shaped into granules using a fertilizer granulator, which could be a disc granulator machine in a disc granulation production line, a double roller press granulator, or part of a roller press granulator production line. For organic operations, the process starts with raw material from a windrow composting machine. After granulation and drying, a coating is applied to the granules to control dust, improve flowability, and provide controlled-release properties, completing the value chain in both standard NPK and specialized bio organic fertilizer production line outputs.Thus, while the machines differ, the principle of applying a protective surface layer is a shared concept across industries, and in fertilizer manufacturing, it is a critical step that adds significant value and functionality to the final product.

Types of organic fertilizer materials and processing characteristics suitable for rotary drum granulators

The rotary drum granulator, with its strong adaptability to various materials and high granulation rate, has become a core piece of equipment in organic fertilizer production lines. It can process organic materials from multiple sources, covering various fields such as livestock farming, agriculture, and industrial processing.

Livestock and poultry manure is the most common suitable material, including chicken manure, pig manure, cow manure, and sheep manure. These materials are rich in basic nutrients such as nitrogen, phosphorus, and potassium. After fermentation and composting, they have a loose texture and a certain viscosity, which meets the granulation requirements of the rotary drum granulator. The rotating agitation of the drum allows the manure material to be fully mixed with auxiliary materials, resulting in granules with moderate strength, effectively solving the problems of seedling burning and environmental pollution caused by the direct application of livestock and poultry manure.

Agricultural straw materials can also be processed by the rotary drum granulator, such as corn stalks, wheat stalks, and rice stalks. Straw is rich in cellulose and organic matter. After crushing and fermentation, it needs to be used in combination with viscous materials such as livestock and poultry manure. The rolling granulation of the drum allows the straw powder to be evenly coated and formed, which not only increases the organic matter content of the organic fertilizer but also realizes the resource utilization of agricultural waste.

In addition, the rotary drum granulator can also process industrial organic waste materials, such as distiller’s grains, vinegar residue, furfural residue, and pharmaceutical waste. These materials are rich in nutrients, but their composition is complex and their moisture content fluctuates greatly. The rotary drum granulator can adapt to the characteristics of different wastes by adjusting the rotation speed and material ratio, converting them into qualified organic fertilizer granules. At the same time, urban and rural organic waste such as kitchen waste and garden fallen leaves, after sorting and fermentation, can also be granulated and recycled through the rotary drum granulator.

From raw materials to granules: The journey to the birth of modern NPK fertilizer

NPK compound fertilizers, widely used in modern agricultural production, undergo a precise and systematic industrial processing procedure. From basic chemical raw materials to uniformly shaped granules, this NPK fertilizer production line integrates chemical synthesis and physical processing technologies, forming a standardized manufacturing system.

Production begins with the precise measurement and synthesis reaction of raw materials. Different proportions of nitrogen, phosphorus, and potassium base materials undergo chemical reactions under controlled conditions to generate a complex containing the target nutrients. This chemical stage establishes the core nutrient content and ratio of the product.

The synthesized slurry then enters the crucial physical molding stage. The rotary drum granulator plays a vital role in this process. By precisely controlling temperature and humidity, these granules achieve a stable physical morphology, preparing them for subsequent processing.

The newly generated granules require complete post-processing. After drying and cooling, the sieving process grades the granules according to their specifications. At this point, lumps with excessively large particle sizes are returned to the previous process, re-crushed in a fertilizer crusher, and then re-granulated. This cycle ensures high raw material utilization and uniform product particle size.

It is worth mentioning that some of the large-particle base fertilizers obtained after drying and screening can be used as raw materials to directly enter another flexible production path—through bulk blending fertilizer machines, they can be quickly and physically mixed with other single-element fertilizers or micronutrients according to actual field needs to produce customized blended fertilizers.

Back To Top