Practical Methods for Improving the Granulation Yield of Flat Die Granulators

In organic fertilizer production lines, flat die granulators typically process materials such as livestock and poultry manure and composted straw. These materials contain coarse fiber and experience large moisture fluctuations, which can easily lead to low granulation yields and loose pellets. To improve granulation efficiency, precise optimization in four key areas is necessary, taking into account the characteristics of the organic fertilizer material.

Raw material pretreatment must be tailored to the characteristics of the organic fertilizer. First, the moisture content should be controlled between 25% and 30%, which is the optimal range for organic fertilizer granulation. A moisture content too low can easily result in broken pellets, while a moisture content too high can cause die sticking and clogging. This can be adjusted by airing the material or adding dry straw powder. Secondly, the composted material should be pulverized to ensure that the coarse fiber particle size does not exceed 1/2 the die hole diameter to prevent fibers from wrapping around the die rollers and causing uneven extrusion. Uncomposted lumps should also be removed to prevent clogging. Additionally, 2% to 3% bentonite can be added as a binder to enhance pellet density without affecting the fertilizer’s efficiency.

Equipment adjustments require targeted optimization. Organic fertilizer materials have poor fluidity, so the die roller gap should be adjusted to 0.2-0.4mm, slightly wider than the standard setting, to prevent material from getting stuck. The roller speed should be reduced to 15-20r/min to allow ample time for the coarse fibers to be extruded and formed. For die orifice selection, a tapered die with a diameter of 4-8mm is preferred to reduce material resistance within the die and minimize the likelihood of blockage. Regularly clean the die orifice with a steel brush to remove residual fiber impurities.

Process operations should be tailored to the production scenario. High-temperature preheating is not required before startup. Simply use a small amount of wet material to “prime” the die, forming a thin layer of material on the inner wall of the die orifice to prevent subsequent material from sticking to the wall. Use a spiral feeder with a constant speed to avoid concentrated lumps of material and prevent equipment overload. If fibers are found on the surface of the pellets and they are prone to breakage during production, add binder or adjust the moisture content promptly.

Maintenance should focus on vulnerable areas. Organic fertilizer materials contain corrosive components. The die roller surface should be cleaned weekly, and residual humus should be removed with a wire brush to prevent corrosion. The inner wall of the die hole should be inspected monthly, and burrs caused by coarse fiber wear should be removed with fine sandpaper. The transmission system lubricant should be replaced quarterly, using a corrosion-resistant, specialized oil to prevent component wear caused by humus contamination.

By optimizing these measures for organic fertilizer production lines, the flat die granulator’s pelletizing rate can be increased to over 90%, reducing waste of mature raw materials while ensuring uniform organic fertilizer pellets and ensuring stable and efficient production line operation.

Solutions to Production Difficulties in Bio-Organic Fertilizer Production Lines

Bio-organic fertilizer production lines often encounter challenges in raw materials, fermentation, equipment operation, and quality control. Through targeted, simple measures and process optimization, bottlenecks can be effectively overcome, ensuring stable production.

The core challenges of raw material pretreatment are uneven composition and excessive impurities. A “stratified sampling + manual blending” approach can be adopted: raw materials are sampled strata by stacking area. Moisture content is measured using a drying method (the sample is dried and then weighed to calculate moisture). The auxiliary materials are then mixed based on experience. If feces is wet and sticky, add pulverized straw at a ratio of 10:3; if it is dry, add an appropriate amount of water. Furthermore, workers are assigned to sort impurities such as plastic and stone from the raw materials. A small magnetic separator (low-cost and easy to operate) is used to remove metallic foreign matter. Samples from each batch of raw materials are sent to a third party for testing for heavy metals and antibiotics, mitigating risks at the source.

The difficulty in controlling temperature and humidity during fermentation, as well as exhaust gas pollution, can be addressed through “manual monitoring + process optimization.” Dedicated personnel are assigned to monitor different points in the stack with thermometers and hygrometers every morning, noon, and evening. A two-step process of “high-temperature composting + low-temperature aging” is employed: the high-temperature period (55-65°C) lasts approximately eight days, with the compost turned every two days to kill pathogens. During the low-temperature period (25-35°C), the materials are moved to a cool, shaded area and covered with film to insulate and promote the growth of beneficial bacteria. To address waste gas emissions, a shallow pond is dug next to the fermentation workshop and filled with a mixture of straw and soil. This is used to direct the waste gas into the pond for absorption and odor reduction.

Issue of unstable equipment operation and disconnected quality control can be addressed through “equipment fine-tuning + manual spot checks.” The crusher’s screen is changed based on the hardness of the raw material (a fine-mesh screen is used for higher hardness), and the feed rate is manually controlled to ensure that the crushed material passes through a 20-mesh screen. The granulator‘s heating knob is manually adjusted, and the temperature is gradually adjusted during pilot production until the pellets are non-sticky and non-fragile. For quality control, samples are taken daily during the fermentation stage to measure organic matter using the incineration method (weight loss after incineration is calculated). pH test paper is used to measure pH after granulation. Finished products are sampled and tested by batch, avoiding quality control vulnerabilities that can arise from reliance on complex equipment.

These methods are simple to operate and low-cost, effectively addressing challenges in bio-organic fertilizer production lines and helping small and medium-sized bio-organic fertilizer manufacturers improve product quality and production efficiency.

Organic Fertilizer Production Line Risk Response Plan

As a key component of the agricultural circular economy, the stable operation of the organic fertilizer production line directly impacts agricultural product quality and environmental safety. This contingency plan has been developed to effectively address various risks in the production process and ensure continuous and efficient operation of the production line.

Raw material supply risk is the primary challenge facing the production line. Organic fertilizer raw materials are primarily agricultural waste, such as livestock and poultry manure and straw. These are susceptible to seasonal fluctuations, epidemics, and other factors, leading to supply disruptions or substandard quality. To address this, it is necessary to establish records for at least three raw material suppliers, sign long-term supply agreements, clearly define raw material quality standards, and establish an emergency replenishment mechanism. Furthermore, a raw material storage area with a capacity of at least 15 days should be reserved within the plant, equipped with rainproof and anti-seepage facilities to prevent mold and loss of raw materials.

Equipment failure directly impacts production schedules. Sudden failure of core equipment in the organic fertilizer production line, such as the fermentation turner, granulator, and dryer, will result in a complete shutdown. A regular equipment inspection system should be established, with daily checks on the operating status of key components and weekly comprehensive maintenance. A spare parts warehouse should be established to stockpile vulnerable parts such as motors and bearings, ensuring replacement within two hours of a malfunction. Emergency maintenance agreements should be signed with equipment manufacturers, promising on-site response within 48 hours for major malfunctions.

Production safety risks cannot be ignored. The fermentation process of raw materials may produce flammable and explosive gases such as methane, and the drying process presents a fire hazard. Combustible gas detectors and alarms should be installed in the fermentation workshop, and automatic fire extinguishing systems should be installed in the drying section. Regular fire safety training and emergency drills should be conducted to ensure that every operator is proficient in the use of fire extinguishing equipment. A strict hot work approval system should be implemented, and supervisors and fire extinguishing equipment must be present on-site.

Furthermore, external risks such as market fluctuations and policy adjustments must be addressed. Diversified product sales channels should be established, and changes in agricultural subsidy policies should be closely monitored to adjust production plans in a timely manner. By establishing a comprehensive risk prevention and control system, the impact of various risks on organic fertilizer production lines can be effectively reduced, ensuring the stability of the green agricultural development industry chain.

Bucket Elevator: The Ultimate Vertical Conveying Solution

In modern chemical, agricultural, and food processing industries, efficiently conveying granular and powdered materials vertically presents a crucial production challenge. The bucket elevator has emerged as star equipment in this domain, particularly within advanced NPK fertilizer production technology and comprehensive organic fertilizer production line systems.

This versatile conveying solution seamlessly integrates with various granulation technologies, including the drum granulatordouble roller press granulator, and specialized organic fertilizer granulator equipment. Whether handling output from an NPK fertilizer granulator or a double roller granulator, bucket elevators maintain consistent material flow between processing stages.

In complete organic fertilizer production systems, bucket elevators provide the vital link between mixing, granulation, drying, and cooling operations. Their enclosed design prevents contamination while ensuring smooth vertical transport of materials from double roller granulator outputs to drying stages, maintaining product integrity throughout the organic fertilizer production line.

The reliability of bucket elevators makes them indispensable in modern NPK fertilizer production technology, where they handle everything from raw materials to finished granules with equal efficiency, supporting continuous production flows and optimizing overall system performance.

In fertilizer production systems, the bucket elevator serves as a crucial material handling component among various fertilizer equipment. As an essential fertilizer production machine, it vertically transports raw materials and granules between different processing stages – from raw material feeding to screening and packaging. This continuous conveying equipment works synergistically with other machines like mixers, granulators, and dryers to form a complete fertilizer production line, ensuring efficient material flow while maintaining product quality throughout the manufacturing process.

Imagine: Occupying only a few square meters of space, yet achieving vertical conveying at heights of tens of meters, with handling capacities ranging from 35 to 185m³/h, while consuming 30% less energy than traditional conveying equipment—this is the efficiency revolution brought by bucket elevators!

Product Technical Specifications

ModelTh315Th400Th500Th630
Hopper TypeZH/SHZH/SHZH/SHSH
Conveying Capacity (m³/h)35/5958/9473/118114/185
Hopper Volume (L)3.75/65.9/9.59.3/1514.6/23.6
Driving gear speed (rpm)42.537.635.831.8
Max conveying particle size (mm)35405060

Why Choose Bucket Elevators?

  • High Space Utilization: Vertical design occupies only 1/5 the space of traditional conveying equipment
  • Strong Conveying Capacity: TH630 model can reach up to 185m³/h conveying capacity
  • Low Energy Consumption: Optimized transmission system saves 20-30% energy compared to similar equipment
  • Excellent Sealing: Fully enclosed design prevents material leakage and environmental pollution
  • Easy Maintenance: Modular design makes daily maintenance more convenient

Application Scenarios

Bucket elevators are widely used in fertilizer, grain, food, feed, mining and other industries. Whether it’s conveying grain from the ground to the top of a silo or lifting fertilizer raw materials from the lower level to mixing equipment, bucket elevators can perform perfectly. It’s especially worth mentioning that our ZH (medium-depth hopper) and SH (deep hopper) designs provide optimal solutions for different material characteristics.

“From fertilizer plants to flour processing workshops, from mines to feed mills, bucket elevators are redefining the standards of vertical material conveying. Choose the right model to make your material conveying more efficient and economical!”

Key Processes and Practices for Granular Fertilizer Production from NPK Raw Materials

Converting elemental nitrogen, phosphorus, and potassium raw materials into granular fertilizer requires scientific proportioning, physical shaping, and precise control to achieve balanced nutrients and convenient application. This npk fertilizer production line not only improves fertilizer utilization but also addresses the challenges of bulk raw materials, such as clumping and transportation difficulties.

The first step is raw material pretreatment and proportioning. Nitrogen sources (such as urea and ammonium chloride), phosphorus sources (superphosphate and diammonium phosphate), and potassium sources (potassium chloride and potassium sulfate) must be crushed to a fineness of 80-100 mesh to ensure uniform mixing. The nitrogen, phosphorus, and potassium ratios are precisely adjusted based on the needs of the target crop. For example, the 15-15-15 general formula commonly used for field crops requires strict control of the tolerance of each raw material within ±0.5%. 5%-8% bentonite is added as a binder to enhance granularity.

The core granulation process often utilizes a rotary drum granulation process. The mixed raw materials are fed into a rotary drum granulator, where a 30%-40% solution of warm water or dilute phosphoric acid is sprayed through a spray device to form “mother balls” within the drum. The drum speed is controlled at 20-25 rpm, and the inclination angle is maintained at 3°-5°. This ensures that the mother balls continuously absorb the raw material powder as they rotate, gradually growing into uniform granules with a diameter of 2-4mm. For the production of high-concentration granular fertilizers, an extrusion granulation process is used. A twin-screw extruder presses the material into a cylindrical shape, which is then sheared into granules by a pelletizer. This is suitable for formulas with low moisture content.

After granulation, the granules undergo drying and cooling. The temperature in the drum fertilizer dryer is controlled at 120-150°C to reduce the moisture content of the granules to below 10% to prevent clumping during storage. The granules then enter a drum fertilizer cooler, where low-temperature air is used to cool them to room temperature to prevent condensation during subsequent packaging. Finally, unqualified granules (overly coarse or fine) are separated by a screening machine and returned to the granulator for reprocessing. The finished product is then sprayed with an anti-caking agent in a coating machine to improve storage stability.

Throughout the entire production process, indicators such as granule strength (should be ≥20N) and disintegration (disintegrates in water within 30 minutes) are monitored in real time to ensure product compliance with national standards. This process transforms nitrogen, phosphorus, and potassium raw materials from bulk to granules, facilitating mechanized fertilization while reducing nutrient loss, providing strong support for improving agricultural quality and efficiency.

How does a disc granulator granulate?

As a key piece of equipment in fertilizer production lines, the disc granulator, with its efficient and stable granulation capabilities, has become a core device for granular material production. Its granulation process follows the scientific logic of “agglomeration – growth – shaping,” achieving precise conversion of raw materials into granules through precise control.

The first step in granulation is raw material pretreatment. Powdered raw materials (such as fertilizer raw materials) are mixed with an appropriate amount of binder (water, starch solution, etc.) to form a wet material with a moisture content of 15%-25%. The mixed wet material is evenly transported by a conveyor belt to the inclined granulation disc. The disc’s tilt angle is typically controlled between 35° and 55°, a value proven through numerous experiments to balance material tumbling efficiency and pellet residence time.

In the core granulation stage, the disc rotates at a constant speed of 10-20 rpm. Under the combined effects of centrifugal force, gravity, and friction, the wet material spirals upward along the inner wall of the disc. During the rotation, the fine powder continuously absorbs surrounding materials, gradually forming small particles with a diameter of 1-3 mm, known as “master particles.” As the disc continues to rotate, the master particles continuously “engulf” the surrounding powder through collision and compression, growing larger like a snowball. The operator monitors the particle size in real time through an observation window. When the particle diameter reaches the target value of 3-8 mm, the disc’s tilt angle and rotational force are used to automatically cause mature particles to overflow from the disc edge, completing the initial granulation process.

The overflowing particles are not immediately finished products; they undergo subsequent optimization steps. The overflowing wet particles first enter a dryer to remove moisture in a hot air environment of 80-120°C. They are then screened by a sieving machine to separate the broken particles from the larger particles that do not meet the particle size requirements. The broken particles are then returned to the raw material system for re-granulation.

The disc speed, tilt angle, and material moisture content are three key parameters throughout the granulation process. Too fast a rotation speed can easily lead to particle breakage, while too slow a rotation speed results in low granulation efficiency. Too large an angle can cause premature overflow, while too small a rotation angle can result in excessive retention time. By precisely controlling these parameters, the disc granulator can achieve a granulation success rate of over 90%, providing an efficient and stable granule forming solution for organic fertilizer production lines.

Energy consumption optimization for BB fertilizer mixers: Cost reduction from adjustment to operational details

In BB fertilizer production, BB fertilizer mixers account for 20%-30% of total energy consumption. Through equipment adjustment and operational optimization, energy consumption can be reduced by 15%-20% without compromising mixing quality.

For BB fertilizer mixer upgrades, variable-speed motors are preferred over traditional fixed-speed motors. The speed is adjusted according to the mixing stage: in the initial feeding phase (when the raw materials have not yet filled the barrel), a low speed of 15 rpm is used to avoid idling energy waste; in the middle mixing phase (when the raw materials are fully tumbling), the speed is increased to 22-25 rpm for efficient mixing; and in the later stages (when the mixing is nearly uniform), the speed is reduced to 18 rpm to reduce energy consumption from excessive mixing. Furthermore, adjusting the mixer’s blade angle from 45° to 30° (for granular raw materials) reduces blade resistance, reduces motor load by 10%-12%, and reduces energy consumption accordingly.

There are three key aspects to optimizing operational details: First, “full load but not overload”—feeding the equipment at 75% of its rated capacity to avoid wasted idling caused by underfeeding (<60%) or motor overload and energy consumption caused by overfeeding (>90%). Second, “centralized batch production”—concentrating fertilizer production of the same formula within 2-3 hours to reduce energy consumption from frequent equipment starts and stops. Third, “reasonable cleaning cycles”—changing “clean every batch” to “clean every three batches”—reduces the equipment’s idle time during cleaning. Furthermore, an anti-stick coating on the drum wall ensures that residue remains within standards.

In addition, regularly inspect the wear of the BB fertilizer mixer’s blades. If the blade edge is worn by more than 1/4, repair or replace it promptly to avoid extended mixing time due to insufficient blade power.

How can we ensure that the effects of BB fertilizer containing functional additives are not lost through a blender?

When adding functional ingredients such as slow-release agents, biological agents, and trace elements to BB fertilizer, the BB fertilizer blender requires special adjustments to prevent the additive effects from being lost or unevenly distributed during the blending process.
Biological agents (such as Bacillus subtilis) are sensitive to high temperatures and easily inactivated. Therefore, two key controls must be implemented during blending: first, the blending temperature. By installing a cooling jacket on the BB fertilizer blender barrel, the chamber temperature can be kept below 35°C to prevent frictional heating from the blades, which could reduce the activity of the agent. Second, the mixing order: pre-mix the agent with 10 times the amount of carrier (such as humus powder) to form a “mother powder.” This should then be added after the blender has been running for 5 minutes. This minimizes direct friction between the agent and other ingredients and ensures a viable bacterial count retention rate exceeding 90%.

If adding a slow-release agent, to avoid damaging the coating during mixing, use a “low-shear” impeller (with blunted blade edges), reduce the speed to 15-18 rpm, and control the mixing time to ≤8 minutes. This prevents the slow-release agent particles from excessively colliding and causing the coating to crack, thereby losing its slow-release effect.
For trace elements, they should first be crushed to a size of 100 mesh or larger, pre-diluted with five times the amount of powdered fertilizer (such as monoammonium phosphate powder), and then added to the BB fertilizer blender using a “multi-point feeding” method to ensure even distribution of the trace elements and avoid localized high concentrations that could cause fertilizer damage to the crop.

What are the environmental protection measures of organic fertilizer production line?

As an important part of agricultural production, its environmental protection measures are of great significance to reduce environmental pollution and improve resource utilization. Here are some effective environmental measures:

  1. Dust control: In the process of mixing, crushing, granulation, etc., dust is collected by sealing equipment and air Collector, and treated by equipment such as Cyclone Dust Collector, bag dust collector or scrubber to reduce dust emission.
  1. Waste Gas treatment: The gas from Gas/Oil Hot Air Stove in the production line needs to be dedusted and desulphurized. Cyclone Dust Collector and water film dedusting technology are adopted to ensure that the exhaust gas meets the emission standards.
  1. Wastewater management: Domestic sewage and production wastewater should be pre-treated through septic tanks, etc., and then appropriate treatment technologies, such as biochemical treatment, physicochemical treatment, etc. should be selected according to the nature of the wastewater to achieve recycling of wastewater or discharge up to standard.
  1. Solid waste treatment: For the solid waste generated in the production process, such as waste packaging bags, dust, etc., should be classified and collected and treated. Recyclable solid waste should be disposed of by the material recovery department, and non-recyclable solid waste should be disposed of safely, such as used as agricultural fertilizer.
  1. Noise control: Through the selection of low noise equipment, plant sound insulation, key parts of the rubber pad and other measures to reduce the noise pollution in the production process.
  1. Odor control: Organic fertilizer may produce odor during the drying process, and the generation and diffusion of odor can be reduced by strengthening ventilation and adopting biological filtration.
  1. Resource recycling: Promote the use of by-products and waste in the Organic Fertilizer Production Line, such as using the hot blast furnace slag generated in the drying process as agricultural fertilizer to realize the recycling of resources.
  1. Enhance environmental awareness: strengthen environmental education and training of employees, improve environmental awareness, and ensure the effective implementation of environmental protection measures.
  1. Environmental monitoring and emergency plan: Regularly monitor the environment around the production line to ensure that pollutant emissions meet standards. At the same time, formulate emergency plans for environmental emergencies and improve the ability to respond to environmental accidents.

 
Through the implementation of the above environmental protection measures, Organic Fertilizer Production Line can not only effectively reduce the impact on the environment, but also improve the efficiency of resource utilization and promote the sustainabl

When using windrow compost turning machines in different seasons, pay attention to key details

windrow compost turning machine isn’t a one-size-fits-all model. Adjusting details according to the season will ensure smooth fermentation of your organic fertilizer.

Spring’s high humidity and fluctuating temperatures can easily lead to a musty odor in the compost. When using a compost turner, increase the frequency of turning the compost. Instead of turning every two days, turn every 1.5 days in spring. Loosen the compost to allow moisture to escape, and monitor the temperature. If the temperature is below 50°C, slow the compost turner’s speed to allow for a more thorough turning, allowing microbial activity to raise the temperature.

Summer temperatures are high, and the compost easily overheats (over 70°C kills beneficial bacteria). Reduce the depth of each turning to avoid bringing all the hot material below to the surface. Turn the compost once a day. Sprinkle a thin layer of soil on the surface after each turning to provide shade and reduce temperatures while preventing rapid evaporation.

Autumn is dry, and the pile is prone to dehydration and cracking. Use a windrow compost turning machine with an atomizer, spraying small amounts of water as you turn to maintain a humidity level of 50%-60%. Slow the turning speed to allow the water and raw materials to mix thoroughly and avoid patches of dryness or wetness.

Winter is cold, and the pile struggles to heat up. Reduce turning frequency to once every three days, avoiding frequent turning to disperse heat. When turning, pile the pile higher (1.2-1.5 meters). Try turning the cold material in the center with the windrow compost turning machine, covering the hot material on the outside to help retain heat and ferment.

Back To Top