Tag: fertilizer granulator machine

How do new type organic fertilizer granulators adapt to different organic fertilizer raw materials?

New type organic fertilizer granulators are more flexible than traditional models. Whether it’s straw, manure, mushroom residue, or distiller’s grains, they can be adapted with minimal adjustments without having to replace equipment.

If using fermented straw for granulation, this raw material is fibrous and somewhat loose, making it difficult to produce compact pellets. Add 5%-8% bentonite (a common binder) to the raw material, mix it thoroughly before feeding it into the new type organic fertilizer granulator, and increase the roller pressure. This will ensure compact pellets without breaking them up and damaging the organic matter in the straw.

For wet, sticky raw materials like chicken manure and pig manure, the biggest concern is clogging the granulator. Instead of adding too much binder, add about 10% dry mushroom residue to reduce moisture. Also, slow the new type organic fertilizer granulator’s feed rate to allow the raw material to fully form in the granulation chamber. The resulting pellets are smooth and less likely to stick to the machine.
When it comes to fine raw materials such as mushroom residue and wine lees, they have moderate viscosity and do not require additional adhesives, which saves materials and time.

How should a windrow compost turner be adjusted for different organic fertilizer raw materials?

Organic fertilizer raw materials vary greatly, such as straw, chicken manure, mushroom residue, and distiller’s grains, and their properties can vary greatly. When using a windrow compost turner, a few adjustments can ensure smoother fermentation.

If you’re turning dry straw, it’s fluffy and porous, but it’s prone to “lifting.” The blades of a windrow compost turner tend to only scrape the surface, failing to thoroughly turn the bottom. In this case, you can steepen the blade angle to allow it to penetrate deeper into the pile. At the same time, slow down the compost turner’s speed to 2-3 kilometers per hour. This ensures that both the top and bottom of the straw pile are turned loosely, breaking up any large clumps and facilitating subsequent fermentation.

If you’re turning wet, sticky raw materials like chicken manure and pig manure, they tend to clump and stick to the blades, and the pile may become compacted after turning. At this time, the blade angle should be adjusted to a gentler angle to reduce sticking, and the forward speed can be increased slightly to allow the turned manure pile to quickly disperse and breathe. Additionally, before turning the pile, sprinkle some dry sawdust on the surface. This will automatically mix the material as the compost turner turns, reducing moisture and preventing clumping.

When turning fine ingredients like mushroom residue and distiller’s grains, the main concern is “missing” them. If the pile is too loose, they can easily leak through the gaps between the blades. By reducing the blade spacing on the windrow compost turner and maintaining a moderate speed, the fine ingredients can be turned over, ensuring even mixing and accelerating fermentation by about 10 days.

Key factors affecting BB fertilizer mixer mixing uniformity

The core quality indicator of BB fertilizer (blended fertilizer) is nutrient uniformity, and the mixing performance of the BB fertilizer mixer directly determines the quality of the final product. This process is influenced by several key factors and requires targeted control.

First, the raw material pretreatment stage. BB fertilizer raw materials are mostly nitrogen, phosphorus, and potassium single granular fertilizers or powdered organic fertilizers. If the raw material particle size varies greatly, stratification due to different densities is likely to occur. Screening is required to control the raw material particle size deviation to within 2mm. At the same time, the raw material moisture content must be maintained at a stable 12%-15%. Too high a moisture content can easily cause the particles to stick together, while too low a moisture content can cause the powdered raw material to generate dust.

Second, the mixing parameter setting is important. The speed of the BB fertilizer mixer should be adjusted according to the raw material type. When mixing granular fertilizer, the speed can be set to 15-20 rpm to avoid particle collision and breakage caused by high speed. When mixing raw materials containing powder, the speed can be increased to 20-25 rpm. The mixing time also needs to be controlled. Typically, 8-12 minutes per mixing cycle is sufficient. Too short a time will result in uneven mixing, while too long a time can easily cause excessive friction and loss of the raw materials.

Finally, the compatibility of the equipment structure is important. The impeller design of the BB fertilizer mixer must balance convection and shearing. If the raw materials contain a small amount of fiber (such as when adding straw powder to organic fertilizer), impellers with scraping functions should be used to prevent the raw materials from adhering to the cylinder walls. The cylinder should avoid right angles and instead use rounded transitions to reduce dead corners where raw materials accumulate, ensuring that every portion of the raw materials is mixed and ensuring uniformity from a structural perspective.

Different fertilizer types require special adaptation requirements for ring die granulators

In fertilizer production, ring die granulators must adjust core parameters based on the characteristics of different raw materials, such as organic fertilizer, compound fertilizer, and slow-release fertilizer, to ensure optimal granulation.

For organic fertilizers, whose raw materials often contain fiber components such as straw and fermented manure, ring die granulators require large-aperture ring dies (typically 8-12mm) and anti-entanglement rollers to prevent fiber entanglement and pelletizing stalls. Furthermore, the steam injection time should be appropriately extended during the conditioning stage to enhance the viscosity of the fiber raw material.

If producing bio-organic fertilizers containing live bacteria, a rapid cooling device should be added after granulation to reduce the pellet temperature to below 35°C to prevent high temperatures from killing the live bacteria.

Compound fertilizer raw materials are primarily nitrogen, phosphorus, and potassium powders, which are prone to moisture absorption and agglomeration. Therefore, granulators require ring dies made of wear-resistant materials (such as alloy steel) to minimize wear on the die holes, and the roller pressure must be precisely controlled. Excessive pressure can cause components like nitrate nitrogen in the raw materials to decompose and be lost due to the high extrusion temperature, while too little pressure can cause the granules to become loose.

Slow-release fertilizers, however, contain special ingredients like coating agents, so the ring die granulator requires a lower extrusion temperature (below 30°C). This is usually achieved by reducing the roller speed (from 30 rpm to 20 rpm) and adding a cooling device to prevent high temperatures from damaging the slow-release coating structure and ensure the fertilizer’s slow-release effect.

Working principle of the fertilizer granule coating machine: Core design adapted to fertilizer characteristics

In fertilizer production, the core function of the coating machine is to address the issues of loose granules and their tendency to absorb moisture and agglomerate. Its workflow is precisely designed based on fertilizer characteristics.

First, during the granule conveying process, the coating machine utilizes an “anti-scattering conveyor belt + vibrating discharge mechanism” to prevent granule accumulation. A flow sensor controls the conveying rate, ensuring that each batch of granules enters the coating area evenly. Even with materials with complex ingredients and uneven particle sizes, such as compound fertilizers, this ensures a uniform distribution of granules of varying sizes, paving the way for subsequent coating.

Next, the film wrapping process occurs. To prevent fertilizers from absorbing moisture, PE or PP film is often used. A film guide mechanism, combined with a particle deflector, tightly wraps the granules from all sides. An adaptive tension system adjusts the film tension based on granule flow to prevent leakage or agglomeration. The heat-sealing and shaping process is particularly critical. The coating machine utilizes hot air circulation to achieve film shrinkage while preventing the loss of fertilizer components due to high temperatures. For example, urea fertilizers are prone to decomposition above 160°C, and precise temperature control maximizes nutrient retention. Zoned temperature control also prevents localized overheating that can lead to pellet clumping, ensuring that pellets remain loose after coating.

Finally, the packaging is cut to pre-set specifications and the bag opening is simultaneously compacted to ensure packaging integrity. This process addresses both fertilizer storage and transportation requirements, ensuring that the packaging is protected from damage and leakage, even during bumpy long-distance transport.

Three Core Application Scenarios for Disc Granulators

Due to their high pellet formation rate and highly adjustable parameters, disc granulators have expanded beyond the traditional fertilizer sector to diverse applications such as environmental protection and metallurgy, becoming a “universal device” for material formation across multiple industries. Their differentiated adaptability to various application scenarios is their core competitive advantage.

Agriculture is the primary market for disc granulators, with each specific application focusing on its own specific niche. In organic fertilizer production lines, for fibrous materials such as livestock and poultry manure and straw, the equipment requires rubber-lined discs with anti-sticking walls, an inclination angle of 35°-40°, and a humic acid binder to achieve efficient granulation at a moisture content of 15%-18%. Compound fertilizer applications require even higher corrosion resistance. 304 stainless steel discs, combined with an atomizing spray system, precisely control the adhesion of nitrogen, phosphorus, and potassium mixtures, ensuring pellet roundness that meets high fertilization standards.

In the field of environmental solid waste treatment, disc granulators have become a key component in resource utilization. When processing municipal sludge, the equipment first reduces the sludge’s moisture content to below 20% through a preheating system. Then, using bentonite as a binder, the equipment, operating at a speed of 18-20 rpm, converts the sludge into spherical pellets suitable for incineration or landfill. For the treatment of industrial solid waste such as steel slag and slag, wear-resistant ceramic-lined discs can withstand the impact of high-hardness materials. Combined with a powerful scraper, they ensure uniform mixing of the ore powder and binder, effectively improving solid waste utilization.

Mineral powder granulation in the metallurgical industry places stringent requirements on equipment stability. For high-density materials such as iron ore concentrate and manganese ore fines, disc granulators utilize a thickened steel frame with an adjustable tilt angle of 40°-45°. A high-frequency vibrating distributor ensures uniform feeding and ensures the compressive strength of the ore powder pellets meets the feed requirements for blast furnace smelting. Furthermore, for the granulation of rare earth materials, the equipment must be equipped with a sealed dust cover to prevent leakage of ultrafine powder and ensure a safe production environment.

From agriculture to environmental protection to metallurgy, the disc granulator continues to expand its application boundaries through customized adjustments of materials, parameters, and supporting systems. In the future, with the integration of new materials technology, its application potential in refined fields such as medicine and food additives will be further released.

Standard Operation of a Disc Granulator in Organic Fertilizer Production

The disc granulator, a core component of the organic fertilizer production line, acts as a “shaping craftsman.” Every step directly impacts pellet quality and safe and stable production. To maximize the performance of this critical piece of equipment, a rigorous and organized standard operating procedure is essential.

The 10 minutes before startup are essential. First, inspect the equipment: check for cracks or loosening on the disc liner, ensure adequate lubrication of transmission components (oil level should be 1/2-2/3 of the mark), and tighten the anchor bolts to prevent loosening. Prepare the raw materials: control the moisture content to 25%-35% (if too high, air dry; if too low, add water). Screen out impurities larger than 5mm to prevent clogging. Finally, perform a safety inspection, clear surrounding debris, securely close the guardrails, test the emergency stop button and overload device, and ensure proper functioning of the electrical circuits and instruments.

The 5-minute startup operation must be performed in a sequential manner. First, start auxiliary equipment such as the raw material conveyor and humidifier. Once these equipment stabilizes, start the granulator’s main motor to avoid damage caused by load. Adjust the disc inclination angle according to the material (lower for clay, higher for organic matter, 45°-55°). Set the speed to 15-20 r/min. Once the disc granulator stabilizes, slowly open the feed valve. Initially, feed at 60% of the rated capacity.

Continuous monitoring is required during operation. Check pellet formation every 10 minutes. Acceptable particle size is 2-5mm. If the pellets are too fine, reduce the feed rate or increase the inclination angle. If there is sticking, reduce the water content. Record parameters every 30 minutes. If the motor current is ≤ 90% of the rated value and the bearing temperature is ≤ 65°C, immediately shut down the machine for investigation.

The minimum shutdown time is 15 minutes. First, close the feed valve, drain the material, turn off the humidifier and main motor, clean any remaining material, inspect components for wear, and keep a maintenance log.

During the entire disc granulator operation, operators must strictly adhere to safety procedures at all times, wear dust masks and hard hats, and never open the guardrail while the machine is running. Only by implementing standardized procedures at every stage can safe and efficient organic fertilizer production be truly achieved.

Analysis of the working principle of a cage crusher for fertilizer grinding

In modern industrial production, material pulverization is a crucial step. Cage crushers, with their unique performance and efficient operation, stand out among numerous pulverizing equipment and have become a valuable tool in many industries.

Cage crushers are primarily designed based on the principle of impact pulverization. Their core structure consists of two counter-rotating cage rotors equipped with numerous impact bars or claws. When material enters the grinder through the feed inlet, it is rapidly propelled by the high-speed rotating cages. These cages typically rotate at speeds between 800 and 1500 rpm, generating strong centrifugal forces. Under this high-speed rotation, the material is subjected to multiple, intense impacts from the impact bars or claws of the counter-rotating cages.

In addition to the impact, the material also collides within the cages, generating shear forces that further aid in pulverization. This repeated impact and collision effectively reduces lumpy or larger particles into the desired fine size.

Moreover, operators can optimize the crushing effect and meet diverse production needs by adjusting parameters such as the cage crusher’s rotation speed, the number and arrangement of beating rods or claws, according to different material properties and finished product particle size requirements.

Why is the disc granulator the preferred choice for organic fertilizer production lines?

For the granulation stage of organic fertilizer production lines, disc granulators are the preferred equipment for most manufacturers due to their outstanding advantages, including strong adaptability, high granulation quality, and low operating costs. This equipment not only precisely matches the characteristics of organic fertilizer raw materials but also balances production efficiency and product quality, providing critical support for stable production line operation.

In terms of raw material compatibility, disc granulators are far more compatible with organic fertilizer materials than other equipment. Organic fertilizer raw materials are mostly loose, fibrous materials such as livestock and poultry manure and composted straw, which have large moisture fluctuations. By precisely matching the inclination angle and rotation speed, the disc granulator utilizes the dual effects of the material’s own gravity and centrifugal force to gradually roll the loose material into granules. This eliminates the need for excessive compression, which damages the fiber structure. Furthermore, the disc granulator can accommodate raw materials of varying particle sizes, eliminating the need for frequent adjustments to equipment parameters and significantly reducing operational complexity.

Granulation quality is the core reason for choosing a disc granulator. High-quality organic fertilizer granules require a smooth surface, moderate hardness, and good water solubility for easy storage, transportation, and field application. The disc granulator’s granulation process utilizes a “rolling granulation” mechanism, with the pellets continuously tumbling within the disc. This not only ensures uniform nutrient coating but also creates pellets with consistent density, resulting in a high yield rate. Furthermore, the pellet diameter can be flexibly controlled by adjusting the disc speed, meeting the fertilization needs of different crops.

From a cost-effectiveness perspective, the disc granulator also offers significant advantages. Its simple structure, consisting solely of a disc, transmission, and frame, reduces failure rates and reduces maintenance costs compared to extrusion granulators. In terms of energy consumption, the power output of each unit is moderate, and the energy consumption per unit product is significantly lower than other granulation equipment. Furthermore, the disc granulator’s small footprint allows for flexible integration into production lines of varying sizes. Whether small or medium-sized family farms or large organic fertilizer producers, they can choose the appropriate model based on their production capacity needs, maximizing investment returns.

In response to the demand for green agriculture, the disc granulator, through its efficient and energy-efficient granulation method, helps improve the quality of organic fertilizer products, becoming a crucial link between agricultural waste resource utilization and green farming.

Disc granulator: High-efficiency granulation equipment for fertilizer production

In fertilizer production, selecting the right granulation equipment directly impacts product quality and production efficiency. Disc granulators, with their outstanding advantages, have become the preferred choice for many companies. As a common fertilizer granulator, they boast a granulation rate exceeding 95%. They can convert powdered or lumpy fertilizer raw materials into granules. The resulting granules have excellent sphericity and high strength, making them easy to store and transport, while also improving fertilizer utilization.

Disc granulators are highly adaptable to fertilizer raw materials, efficiently processing everything from organic fertilizers like livestock and poultry manure and fermented straw to inorganic compound fertilizers containing nitrogen, phosphorus, and potassium. Operating them simply, they easily control the granulation process by adjusting the disc’s tilt angle, rotation speed, and the amount of water or binder applied, meeting the production requirements of diverse fertilizer specifications.

At the same time, compared with other granulation equipment, the disc granulator has lower energy consumption, can effectively reduce the production and operation costs of enterprises, bring significant economic benefits to fertilizer production enterprises, and is an important equipment to promote the efficient development of the fertilizer industry.

Back To Top