Tag: disc granulator

In the fertilizer granulator series, which granulation method is most suitable for large-scale production?

In the field of fertilizer production, granulation technology is a key link to improve the quality and efficiency of fertilizer. In the face of many fertilizer granulator series, choosing the most suitable for large-scale production of granulation methods, you need to consider many factors such as production efficiency, cost, product quality and operation convenience.
 

Fertilizer Granules Compaction Machine: representative of high efficiency

 
Fertilizer Granules Compaction Machine occupies a place in mass production for its high efficiency and good forming effect. The device extrudes material through a pair of rotating rollers to form particles. It is especially suitable for dealing with those materials with poor bonding, such as urea, phosphate fertilizer, etc., and can realize the molding of a large number of fertilizers in a short time. In addition, the Fertilizer Granules Compaction Machine consumes relatively low energy, is easy to maintain, is suitable for continuous and automated production processes, is one of the preferred equipment in large-scale production.

Flat-Die Pellet Machine: has high adaptability

 
A Flat-Die Pellet Machine is used to press the material into particles of the desired shape by pressing the mold. This granulation method is highly adaptable to materials and can handle a variety of different types of fertilizer raw materials, including organic and inorganic fertilizers. Another advantage of the Flat-Die Pellet Machine is that the shape and size of the pellets can be adjusted by changing the mold to meet different market needs. However, Flat-Die Pellet machines are slightly less productive than Fertilizer Granules Compaction machines and may require more mold replacement and maintenance work in mass production.

Rotary Drum Granulator: Uniform particle quality

 
Rotary Drum Granulator turns and rounds materials by rotating the drum and an internal copy plate to form particles. This granulation method is suitable for the production of high-quality organic fertilizers, because the Rotary Drum Granulator can fully mix and form the material at a slower speed, thus ensuring the uniformity and quality of the particles. Rotary Drum Granulator has low energy consumption and wear during the production process and is suitable for long continuous operation, as well as for mass production.

Disc Granulator: Easy to operate

 
Disc Granulator By rotating a disc, the material rolls on the surface of the disc and gradually gathers into particles. This granulation method is simple to operate, easy to control, and suitable for small and medium-sized production. The investment cost of Disc Granulator is relatively low, but its production efficiency and pellet forming effect may not be as good as that of Fertilizer Granules Compaction Machine and Rotary Drum Granulator. Therefore, it may not be optimal in mass production.

conclusion

 
Considering production efficiency, cost, product quality and operation convenience, Fertilizer Granules Compaction Machine and Rotary Drum Granulator have more advantages in mass production. Fertilizer Granules Compaction Machine, with its high efficiency and low energy consumption, is especially suitable for treating materials with poor adhesion, while Rotary Drum Granulator, because of its uniform particle quality and low operating cost, Suitable for the production of high quality organic fertilizer. According to the characteristics and production needs of different fertilizer raw materials, choosing the right granulator is the key to ensure the quality and production efficiency of fertilizer products.

Three Core Application Scenarios for Disc Granulators

Due to their high pellet formation rate and highly adjustable parameters, disc granulators have expanded beyond the traditional fertilizer sector to diverse applications such as environmental protection and metallurgy, becoming a “universal device” for material formation across multiple industries. Their differentiated adaptability to various application scenarios is their core competitive advantage.

Agriculture is the primary market for disc granulators, with each specific application focusing on its own specific niche. In organic fertilizer production lines, for fibrous materials such as livestock and poultry manure and straw, the equipment requires rubber-lined discs with anti-sticking walls, an inclination angle of 35°-40°, and a humic acid binder to achieve efficient granulation at a moisture content of 15%-18%. Compound fertilizer applications require even higher corrosion resistance. 304 stainless steel discs, combined with an atomizing spray system, precisely control the adhesion of nitrogen, phosphorus, and potassium mixtures, ensuring pellet roundness that meets high fertilization standards.

In the field of environmental solid waste treatment, disc granulators have become a key component in resource utilization. When processing municipal sludge, the equipment first reduces the sludge’s moisture content to below 20% through a preheating system. Then, using bentonite as a binder, the equipment, operating at a speed of 18-20 rpm, converts the sludge into spherical pellets suitable for incineration or landfill. For the treatment of industrial solid waste such as steel slag and slag, wear-resistant ceramic-lined discs can withstand the impact of high-hardness materials. Combined with a powerful scraper, they ensure uniform mixing of the ore powder and binder, effectively improving solid waste utilization.

Mineral powder granulation in the metallurgical industry places stringent requirements on equipment stability. For high-density materials such as iron ore concentrate and manganese ore fines, disc granulators utilize a thickened steel frame with an adjustable tilt angle of 40°-45°. A high-frequency vibrating distributor ensures uniform feeding and ensures the compressive strength of the ore powder pellets meets the feed requirements for blast furnace smelting. Furthermore, for the granulation of rare earth materials, the equipment must be equipped with a sealed dust cover to prevent leakage of ultrafine powder and ensure a safe production environment.

From agriculture to environmental protection to metallurgy, the disc granulator continues to expand its application boundaries through customized adjustments of materials, parameters, and supporting systems. In the future, with the integration of new materials technology, its application potential in refined fields such as medicine and food additives will be further released.

Reasons for the Growing Demand for Bio-Organic Fertilizer Production Lines

As agriculture moves toward green and sustainable development, demand for bio-organic fertilizer production lines is growing rapidly, primarily due to the following key factors.

Policy guidance is a key driver. Many countries have introduced specific policies to support the development of the bio-organic fertilizer industry. For example, the European Union has implemented a “Farm to Fork” strategy, which explicitly calls for reducing the use of chemical fertilizers. It subsidizes farms that use bio-organic fertilizers and offers tax breaks to bio-organic fertilizer manufacturers. For example, Germany exempts bio-organic fertilizer manufacturers that meet environmental standards from some corporate income tax. The United States has established a special fund to support the construction of bio-organic fertilizer production lines and has enacted regulations to strictly restrict the indiscriminate disposal of agricultural waste. This has encouraged farms and businesses to transform livestock and poultry manure, crop straw, and other products into usable resources through bio-organic fertilizer production lines, reducing pollution while creating economic value. Evolving market demand is also crucial.

With rising consumption, green and organic agricultural products are gaining popularity, with their market size growing at an average annual rate of 10%. Bio-organic fertilizers can improve the quality of agricultural products, increase the vitamin C content of fruits and vegetables, and eliminate the “chemical fertilizer smell,” thus meeting market demand for high-quality agricultural products. Furthermore, long-term use of chemical fertilizers has led to soil compaction and a decrease in organic matter. Bio-organic fertilizers, with their ability to loosen the soil, replenish carbon sources, and inhibit soil-borne diseases, are urgently needed for soil remediation. Furthermore, the growth of large-scale agriculture has significantly increased demand for bio-organic fertilizers from planting bases and family farms, prompting companies to expand production capacity.

Technological advances have provided strong support for the development of bio-organic fertilizer production lines. Automated production lines have improved production efficiency, reduced labor costs by over 60%, and lowered energy consumption by 20%-30%. Advanced bacterial strains and processes have significantly improved product quality and significantly increased the number of viable bacteria. Intelligent management enables full control of the production process, attracting more companies to participate.

Furthermore, abundant and affordable raw materials provide cost advantages for bio-organic fertilizer production lines, and companies can also receive environmental protection incentives for waste disposal. Faced with market saturation and regulatory pressure, traditional chemical fertilizer companies have shifted to the bio-organic fertilizer business. The continuous influx of new players has further increased demand for production lines.

Standard Operation of a Disc Granulator in Organic Fertilizer Production

The disc granulator, a core component of the organic fertilizer production line, acts as a “shaping craftsman.” Every step directly impacts pellet quality and safe and stable production. To maximize the performance of this critical piece of equipment, a rigorous and organized standard operating procedure is essential.

The 10 minutes before startup are essential. First, inspect the equipment: check for cracks or loosening on the disc liner, ensure adequate lubrication of transmission components (oil level should be 1/2-2/3 of the mark), and tighten the anchor bolts to prevent loosening. Prepare the raw materials: control the moisture content to 25%-35% (if too high, air dry; if too low, add water). Screen out impurities larger than 5mm to prevent clogging. Finally, perform a safety inspection, clear surrounding debris, securely close the guardrails, test the emergency stop button and overload device, and ensure proper functioning of the electrical circuits and instruments.

The 5-minute startup operation must be performed in a sequential manner. First, start auxiliary equipment such as the raw material conveyor and humidifier. Once these equipment stabilizes, start the granulator’s main motor to avoid damage caused by load. Adjust the disc inclination angle according to the material (lower for clay, higher for organic matter, 45°-55°). Set the speed to 15-20 r/min. Once the disc granulator stabilizes, slowly open the feed valve. Initially, feed at 60% of the rated capacity.

Continuous monitoring is required during operation. Check pellet formation every 10 minutes. Acceptable particle size is 2-5mm. If the pellets are too fine, reduce the feed rate or increase the inclination angle. If there is sticking, reduce the water content. Record parameters every 30 minutes. If the motor current is ≤ 90% of the rated value and the bearing temperature is ≤ 65°C, immediately shut down the machine for investigation.

The minimum shutdown time is 15 minutes. First, close the feed valve, drain the material, turn off the humidifier and main motor, clean any remaining material, inspect components for wear, and keep a maintenance log.

During the entire disc granulator operation, operators must strictly adhere to safety procedures at all times, wear dust masks and hard hats, and never open the guardrail while the machine is running. Only by implementing standardized procedures at every stage can safe and efficient organic fertilizer production be truly achieved.

Analysis of the working principle of a cage crusher for fertilizer grinding

In modern industrial production, material pulverization is a crucial step. Cage crushers, with their unique performance and efficient operation, stand out among numerous pulverizing equipment and have become a valuable tool in many industries.

Cage crushers are primarily designed based on the principle of impact pulverization. Their core structure consists of two counter-rotating cage rotors equipped with numerous impact bars or claws. When material enters the grinder through the feed inlet, it is rapidly propelled by the high-speed rotating cages. These cages typically rotate at speeds between 800 and 1500 rpm, generating strong centrifugal forces. Under this high-speed rotation, the material is subjected to multiple, intense impacts from the impact bars or claws of the counter-rotating cages.

In addition to the impact, the material also collides within the cages, generating shear forces that further aid in pulverization. This repeated impact and collision effectively reduces lumpy or larger particles into the desired fine size.

Moreover, operators can optimize the crushing effect and meet diverse production needs by adjusting parameters such as the cage crusher’s rotation speed, the number and arrangement of beating rods or claws, according to different material properties and finished product particle size requirements.

Practical Strategies for Improving the Efficiency of Disc Granulators in Organic Fertilizer Production Lines

In organic fertilizer production lines, the efficiency of disc granulators directly impacts overall production capacity and finished product quality. To maximize equipment performance, systematic optimization is necessary, encompassing multiple aspects, including material compatibility, parameter control, and standardized operation. Specifically, these four key areas can be addressed.

First, effective material pretreatment is fundamental. Organic fertilizer raw materials, such as livestock and poultry manure and straw, often exhibit uneven moisture content and coarse particle size. Dehydration through extrusion or atomization is essential to precisely control the material moisture content to 35%-45%. This avoids low moisture content, which can lead to difficult pellet formation and high reject rates, or high moisture content, which can cause pellet sticking. Furthermore, a hammer mill combined with a vibrating screen can be used to refine the material to a particle size of 80-120 mesh, removing impurities and coarse particles, reducing granulation resistance, and clearing obstacles for subsequent processes.

Second, scientifically adjusting equipment parameters is crucial. The disc inclination angle and speed should be adjusted flexibly based on the material characteristics. Typically, the inclination angle is set at 18°-22°, and the speed is controlled between 15-25 rpm. For highly viscous materials, the inclination angle can be increased and the speed increased to reduce wall sticking. For dry materials, the inclination angle and speed should be reduced to ensure adequate rolling and forming of the pellets. Furthermore, installing an atomizing spray system allows moisture to be evenly applied to the material surface, preventing overwetting and improving pellet uniformity and forming speed.

Furthermore, standardized operational management is essential. Operators must strictly adhere to the procedures of pre-startup inspection, monitoring during operation, and post-shutdown cleaning. Before starting the machine, check bearing lubrication and disc levelness. During startup, control the material feed rate to avoid overloading and resulting in particle size fluctuations. If problems such as overfine particles or wall sticking are detected, fine-tune parameters promptly to minimize downtime and ensure continuous and stable operation.

Finally, regular maintenance can extend the life of the equipment and maintain high efficiency. Clean the discs of residual material and inspect the liner for wear daily. Tighten the liner screws and adjust the drive belt tension weekly. Replace the bearing lubricant and test the motor performance monthly. Promptly replacing worn parts prevents minor faults from becoming major problems, ensuring the disc granulator is always in optimal working condition and helping improve the quality and efficiency of your organic fertilizer production line.

Why is the disc granulator the preferred choice for organic fertilizer production lines?

For the granulation stage of organic fertilizer production lines, disc granulators are the preferred equipment for most manufacturers due to their outstanding advantages, including strong adaptability, high granulation quality, and low operating costs. This equipment not only precisely matches the characteristics of organic fertilizer raw materials but also balances production efficiency and product quality, providing critical support for stable production line operation.

In terms of raw material compatibility, disc granulators are far more compatible with organic fertilizer materials than other equipment. Organic fertilizer raw materials are mostly loose, fibrous materials such as livestock and poultry manure and composted straw, which have large moisture fluctuations. By precisely matching the inclination angle and rotation speed, the disc granulator utilizes the dual effects of the material’s own gravity and centrifugal force to gradually roll the loose material into granules. This eliminates the need for excessive compression, which damages the fiber structure. Furthermore, the disc granulator can accommodate raw materials of varying particle sizes, eliminating the need for frequent adjustments to equipment parameters and significantly reducing operational complexity.

Granulation quality is the core reason for choosing a disc granulator. High-quality organic fertilizer granules require a smooth surface, moderate hardness, and good water solubility for easy storage, transportation, and field application. The disc granulator’s granulation process utilizes a “rolling granulation” mechanism, with the pellets continuously tumbling within the disc. This not only ensures uniform nutrient coating but also creates pellets with consistent density, resulting in a high yield rate. Furthermore, the pellet diameter can be flexibly controlled by adjusting the disc speed, meeting the fertilization needs of different crops.

From a cost-effectiveness perspective, the disc granulator also offers significant advantages. Its simple structure, consisting solely of a disc, transmission, and frame, reduces failure rates and reduces maintenance costs compared to extrusion granulators. In terms of energy consumption, the power output of each unit is moderate, and the energy consumption per unit product is significantly lower than other granulation equipment. Furthermore, the disc granulator’s small footprint allows for flexible integration into production lines of varying sizes. Whether small or medium-sized family farms or large organic fertilizer producers, they can choose the appropriate model based on their production capacity needs, maximizing investment returns.

In response to the demand for green agriculture, the disc granulator, through its efficient and energy-efficient granulation method, helps improve the quality of organic fertilizer products, becoming a crucial link between agricultural waste resource utilization and green farming.

Disc granulator: High-efficiency granulation equipment for fertilizer production

In fertilizer production, selecting the right granulation equipment directly impacts product quality and production efficiency. Disc granulators, with their outstanding advantages, have become the preferred choice for many companies. As a common fertilizer granulator, they boast a granulation rate exceeding 95%. They can convert powdered or lumpy fertilizer raw materials into granules. The resulting granules have excellent sphericity and high strength, making them easy to store and transport, while also improving fertilizer utilization.

Disc granulators are highly adaptable to fertilizer raw materials, efficiently processing everything from organic fertilizers like livestock and poultry manure and fermented straw to inorganic compound fertilizers containing nitrogen, phosphorus, and potassium. Operating them simply, they easily control the granulation process by adjusting the disc’s tilt angle, rotation speed, and the amount of water or binder applied, meeting the production requirements of diverse fertilizer specifications.

At the same time, compared with other granulation equipment, the disc granulator has lower energy consumption, can effectively reduce the production and operation costs of enterprises, bring significant economic benefits to fertilizer production enterprises, and is an important equipment to promote the efficient development of the fertilizer industry.

How to Choose the Right Disc Granulator for Your Production Line

In fertilizer production lines, the choice of disc granulator directly impacts production capacity and product quality. Combining the technical specifications and application characteristics of Huaqiang Heavy Industry’s disc granulators, a sound selection requires focusing on four key dimensions.

First, precisely matching production needs is crucial. Equipment requirements vary significantly across industries. For the fertilizer industry, when producing organic fertilizer, rubber or polyurethane-lined models are preferred to avoid corrosion and accommodate fermentable materials like livestock and poultry manure. The recommended rotational speed is 10-18 rpm to preserve organic matter activity. For inorganic compound fertilizer production, ensuring uniform feed distribution and a consistent mixing of nitrogen, phosphorus, and potassium is crucial. Production capacity selection should be based on specific parameters. For example, a small workshop with an hourly production capacity of 0.05-0.15 tons should choose the ZL-500 model, while a large factory with a production capacity of 3.5-6 tons should opt for the ZL-3600 model. A 10%-15% capacity margin should be reserved to account for seasonal fluctuations.

Second, pay close attention to the core configuration details of the equipment. The drive system determines operational stability. For example, the ZL-3600 model, equipped with an 18.5kW motor and a 10r/min speed, can accommodate high-load granulation needs. The disc inclination angle should be adjustable from 30° to 60°, allowing for flexible adjustment based on material viscosity. For example, highly viscous mineral powders require a larger inclination angle of around 50° to reduce wall sticking. The water spray system should be equipped with multiple sets of adjustable nozzles to ensure a stable moisture content of 10%-20% to prevent loose particles and agglomeration. This is crucial for the strength of fertilizer pellets and the quality of metallurgical mineral powder pellets.

Furthermore, a comprehensive assessment of the manufacturer’s capabilities is crucial. Prefer companies like Huaqiang Heavy Industry that have comprehensive production capabilities. Their 12 disc granulator models cover varying production capacity requirements and allow customers to visit their factory for a firsthand understanding of the equipment’s production processes and quality control procedures. Also, consider whether the manufacturer offers customized services.

Finally, prioritize after-sales service and supporting support. Confirm whether the manufacturer offers free installation, commissioning, and operator training to prevent production disruptions caused by improper operation. Equipment packaging must meet transportation standards, such as packaging the main unit bare to minimize impacts and plywood boxes for electrical components. Customized wooden boxes can be used for special transportation needs. Furthermore, the inventory cycle and warranty policy for consumable parts such as nozzles and inner linings must be clearly defined to ensure long-term stable operation of the equipment and reduce future maintenance costs.

Common Problems and Solutions for Disc Granulators in Organic Fertilizer Production Lines

Disc granulators are widely used in organic fertilizer production lines due to their advantages, such as uniform granulation and low cost. However, in actual operation, they are susceptible to various factors, leading to various problems that affect production efficiency and product quality.

Improper control of raw material moisture is a primary challenge. If the moisture content is too high, the raw material will easily clump on the inner wall of the disc, forming large, adhered masses. This not only prevents proper granulation but also increases the difficulty of equipment cleaning. If the moisture content is too low, the raw material will have poor flowability, making it difficult to agglomerate into granules, resulting in loose and easily broken granules. To address this issue, precise control of the raw material moisture content using a moisture meter before granulation is required. Typically, the moisture content is maintained at a stable level of 25%-35%. If the moisture content is not within this range, it should be adjusted promptly using a dryer or humidifier.

Improper disc inclination and rotation speed can also cause problems. If the inclination angle is too large, the raw materials will stay in the disc too short, causing the particles to be discharged before they have time to fully round, resulting in irregularly shaped finished particles. If the inclination angle is too small, the raw materials will pile up, easily causing “sticking” and affecting normal equipment operation. Excessive rotational speed will subject the raw materials to excessive centrifugal force, preventing effective agglomeration. Too slow rotational speed will significantly reduce granulation efficiency. Generally, the disc inclination angle should be adjusted to 35°-45° and the rotational speed to 15-20 rpm, depending on the raw material characteristics. These parameters should be gradually optimized through trial production.

In addition, uneven mixing of raw materials can also affect granulation performance. If the organic raw materials and auxiliary materials are not fully mixed, nutrient imbalances in certain areas can lead to poor granulation quality and uneven particle size. This requires the use of high-efficiency mixing equipment before granulation to ensure that the raw materials are mixed uniformly to a level above 90%. Regular inspection of the mixing blades of the mixing equipment should also be performed to prevent blade wear that may reduce mixing efficiency.

In response to these common problems, a complete inspection mechanism needs to be established during production, and the operating status of the equipment and raw material indicators should be checked regularly, and the process parameters should be adjusted in time to ensure the stable operation of the disc granulator and improve the quality of the finished organic fertilizer.

Back To Top